Transport https://jbem.vgtu.lt/index.php/Transport <p style="text-align: justify;">The journal TRANSPORT publishes articles in the fields of: transport policy; fundamentals of the transport system; technology for carrying passengers and freight using road, railway, inland waterways, sea and air transport; technology for multimodal transportation and logistics; loading technology; roads, railways; airports, ports; traffic safety and environment protection; design, manufacture and exploitation of motor vehicles; pipeline transport; transport energetics; fuels, lubricants and maintenance materials; teamwork of customs and transport; transport information technologies; transport economics and management; transport standards; transport educology and history, etc.<br><a href="https://journals.vilniustech.lt/index.php/Transport/about">More information ...</a></p> en-US <p>Copyright © 2021 The Author(s). Published by Vilnius Gediminas Technical University.</p> <p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</p> olegas.prentkovskis@vilniustech.lt (Olegas Prentkovskis) transport@vilniustech.lt (Paulius Skačkauskas) Tue, 31 Dec 2024 00:00:00 +0200 OJS 3.1.2.4 http://blogs.law.harvard.edu/tech/rss 60 Railway transport system modelling approach for robustness analysis https://jbem.vgtu.lt/index.php/Transport/article/view/22877 <p>The article presents an approach to train traffic modelling that allows for the analysis of how railway networks respond to various disturbances, including increased traffic and disturbance events. It discusses different methods of reconfiguration actions in key points of the railway network, which helps reduce delay propagation in the transport system. The 1st part covers building simulation models, which include defining infrastructure, setting train routes, configuring rolling stock, and disturbance scenarios, enabling the analysis of various disruptive events. The simulations allow for testing disturbance scenarios with minimal downtime risk without interfering with the real-world environment. The study results identified key system parameters generating the largest delays, such as platform availability, signaling, and the number of block sections. Probability density distributions for event intervals and durations were analyzed. The Kolmogorov–Smirnov test was used to confirm the fit of empirical distributions with theoretical ones, which were then implemented in the model of railway line No 271, running from Wrocław to Żmigród (Poland). As part of the reconfiguration of this railway line, new platforms were added, the time required for route setting was reduced, and the number of block sections was increased. These actions significantly reduced average delays, improved line capacity, and enhanced the robustness of the railway transport system against disturbances. The reconfiguration effectively reduced delays in areas causing significant time exceedances above 359 s, which was recognized in the Polish railway network as critical.</p> <p><strong>First published online </strong>3 January 2025</p> Łukasz Wolniewicz Copyright (c) 2024 The Author(s). Published by Vilnius Gediminas Technical University. http://creativecommons.org/licenses/by/4.0 https://jbem.vgtu.lt/index.php/Transport/article/view/22877 Tue, 31 Dec 2024 00:00:00 +0200