Share:


A model to evaluate supply chain technology implementation influence on organizational performance

    Zeynab Soltany Affiliation
    ; Reza Rostamzadeh Affiliation
    ; Viktor Skrickij Affiliation

Abstract

Supply Chain Management (SCM) aims to achieve organizational competitiveness. By including SCM paradigm and Information Technology (IT), companies aim to enhance their responsiveness and flexibility, and by changing their operations’ strategy, they attempt to improve their competitiveness. This study focuses on the organizational variable, IT capabilities, technological structure, and possible antecedents and their impact on Supply Chain Technology (SCT) implementation. This paper proposes a model to examine the way, which SCT implementation affects IT enabled Organizational Performance (OP). The data were achieved through the questionnaires, and then they were analysed by using Smart PLS 3 program. The data collected from 118 employees in IT sector of Iran’s customs administration provide strong support to the proposed research model. The results of this research showed that SCT implementation has a mediating effect on IT enabled OP improvement. Besides, the study revealed that IT capabilities have the most and organizational variable has the least influence on implementation of SCT. Based on other organization’s situations, they can use the suggested model with a little changes.

Keyword : supply chain technology, organizational performance, IT enabled, structural equation model, simultaneous factor analysis

How to Cite
Soltany, Z., Rostamzadeh, R., & Skrickij, V. (2018). A model to evaluate supply chain technology implementation influence on organizational performance. Transport, 33(3), 779-792. https://doi.org/10.3846/transport.2018.5468
Published in Issue
Sep 27, 2018
Abstract Views
2075
PDF Downloads
1287
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Acar, A. Z.; Uzunlar, M. B. 2014. The effects of process development and information technology on time-based supply chain performance, Procedia – Social and Behavioral Sciences 150: 744–753. https://doi.org/10.1016/j.sbspro.2014.09.044


Autry, C. W.; Grawe, S. J.; Daugherty, P. J.; Richey, R. G. 2010. The effects of technological turbulence and breadth on supply chain technology acceptance and adoption, Journal of Operations Management 28(6): 522–536. https://doi.org/10.1016/j.jom.2010.03.001

Bala, H.; Venkatesh, V. 2016. Adaptation to information technology: a holistic nomological network from implementation to job outcomes, Management Science 62(1): 156–179. https://doi.org/10.1287/mnsc.2014.2111

Bali, R.; Cockerham, G.; Bloor, C. 1999. MISCO: a conceptual model for MIS implementation in SMEs, Information Research 4(4). Available from Internet: http://www.informationr.net/ir/4-4/paper61.html

Balsmeier, P. W.; Voisin, W. J. 1996. Supply chain management: a time-based strategy, Industrial Management 38(5): 24–27.

Biswas, S.; Narahari, Y. 2004. Object oriented modeling and decision support for supply chains, European Journal of Operational Research 153(3): 704–726. https://doi.org/10.1016/S0377-2217(02)00806-8

Bock, G.-W.; Zmud, R. W.; Kim, Y.-G.; Lee, J.-N. 2005. Behavioral intention formation in knowledge sharing: examining the roles of extrinsic motivators, social-psychological forces, and organizational climate, MIS Quarterly 29(1): 87–111. https://doi.org/10.2307/25148669

Boon-itt, S. 2009. The role of information technology and supply chain integration on production cost performance, in 2009 IEEE International Conference on Industrial Engineering and Engineering Management, 8–11 December 2009, Hong Kong, China, 1464–1468. https://doi.org/10.1109/IEEM.2009.5373068

Boynton, A. C.; Zmud, R. W. 1987. Information technology planning in the 1990’s: directions for practice and research, MIS Quarterly 11(1): 59–71. https://doi.org/10.2307/248826

Breu, K.; Hemingway, C. J.; Strathern, M.; Bridger, D. 2002. Workforce agility: the new employee strategy for the knowledge economy, Journal of Information Technology 17(1): 21–31. https://doi.org/10.1080/02683960110132070

Byrd, T. A.; Davidson, N. W. 2003. Examining possible antecedents of IT impact on the supply chain and its effect on firm performance, Information & Management 41(2): 243–255. https://doi.org/10.1016/S0378-7206(03)00051-X

Chang, S. E.; Lin, C.-S. 2007. Exploring organizational culture for information security management, Industrial Management & Data Systems 107(3): 438–458. https://doi.org/10.1108/02635570710734316

Chen, S.-S.; Chuang, Y.-W.; Chen, P.-Y. 2012. Behavioral intention formation in knowledge sharing: Examining the roles of KMS quality, KMS self-efficacy, and organizational climate, Knowledge-Based Systems 31: 106–118. https://doi.org/10.1016/j.knosys.2012.02.001

Chin, W. W. 2010. How to write up and report PLS analyses, in V. Esposito Vinzi, W. Chin, J. Henseler, H. Wang (Eds.). Handbook of Partial Least Squares, 655–690. https://doi.org/10.1007/978-3-540-32827-8_29

Chin, W. W. 1998a. Commentary: issues and opinion on structural equation modeling, MIS Quarterly 22(1): 7–16.

Chin, W. W. 1998b. The partial least squares approach to structural equation modeling, in G. A. Marcoulides (Ed.). Modern Methods for Business Research, 295–336.

Chin, W. W.; Newsted, P. R. 1999. Structural equation modeling analysis with small samples using partial least squares, in R. H. Hoyle (Eds.). Statistical Strategies for Small Sample Research, 307–341.

Chung, S. H.; Rainer, R. K.; Lewis, B. R. 2003. The impact of information technology infrastructure flexibility on strategic alignment and application implementations, Communications of the Association for Information Systems 11: 191–206.

Colin, M.; Galindo, R.; Hernández, O. 2015. Information and Communication Technology as a Key Strategy for Efficient Supply Chain Management in Manufacturing SMEs, Procedia Computer Science 55: 833–842. https://doi.org/10.1016/j.procs.2015.07.152

Connell, J. 2001. Influence of firm size on organizational culture and employee morale, Journal of Management Research 1(4): 220–232.

Davis, F. D. 1989. Perceived usefulness, perceived ease of use, and user acceptance of information technology, MIS Quarterly 13(3): 319–340. https://doi.org/10.2307/249008

Dedrick, J.; Xu, S. X.; Zhu, K. 2008. Information technology and the number of suppliers in a supply chain: is there a relationship?, in Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008), 7–10 January 2008, Waikoloa, HI, USA. https://doi.org/10.1109/HICSS.2008.205

Doll, W. J. 1985. Avenues for top management involvement in successful MIS development, MIS Quarterly 9(1): 17–35. https://doi.org/10.2307/249271

Fawcett, S. E.; Magnan, G. M.; McCarter, M. W. 2008. Benefits, barriers, and bridges to effective supply chain management, Supply Chain Management: an International Journal 13(1): 35–48. https://doi.org/10.1108/13598540810850300

Fiala, P. 2005. Information sharing in supply chains, Omega: the International Journal of Management Science 33(5), 419–423. https://doi.org/10.1016/j.omega.2004.07.006

Fornell, C.; Larcker, D. F. 1981a. Evaluating structural equation models with unobservable variables and measurement error, Journal of Marketing Research 18(1): 39–50. https://doi.org/10.2307/3151312

Fornell, C.; Larcker, D. F. 1981b. Structural equation models with unobservable variables and measurement error: algebra and statistics, Journal of Marketing Research 18(3): 382–388. https://doi.org/10.2307/3150980

Goffnett, S. P.; Cook, R. L.; Williams, Z.; Gibson, B. J. 2012. Understanding satisfaction with supply chain management careers: an exploratory study, The International Journal of Logistics Management 23(1): 135–158. https://doi.org/10.1108/09574091211226966

Gross, J. L.; Rayner, S. 1985. Measuring Culture: a Paradigm for the Analysis of Social Organization. Columbia University Press. 146 p.

Gunasekaran, A.; Ngai, E. W. T. 2004. Information systems in supply chain integration and management, European Journal of Operational Research 159(2): 269–295. https://doi.org/10.1016/j.ejor.2003.08.016

Hair, J. F.; Hult, G. T. M.; Ringle, C.; Sarstedt, M. 2017. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). SAGE Publications, Inc. 384 p.

Hartnell, C. A.; Ou, A. Y.; Kinicki, A. 2011. Organizational culture and organizational effectiveness: A meta-analytic investigation of the competing values framework's theoretical suppositions, Journal of Applied Psychology 96(4): 677–694. https://doi.org/10.1037/a0021987

Jacyna-Gołda, I.; Izdebski, M.; Podviezko, A. 2017. Assessment of efficiency of assignment of vehicles to tasks in supply chains: a case study of a municipal company, Transport 32(3): 243–251. https://doi.org/10.3846/16484142.2016.1275040

Jin, B.; Kang, J. H. 2013. Antecedents and outcomes of global sourcing and information technology in the US apparel supply chain, The Journal of The Textile Institute 104(1): 57–66. https://doi.org/10.1080/00405000.2012.693275

Kim, H. J. 2017. Information technology and firm performance: the role of supply chain integration, Operations Management Research 10(1–2): 1–9. https://doi.org/10.1007/s12063-016-0122-z

Lai, K.-H.; Wong, C. W. Y.; Cheng, T. C. E. 2006. Institutional isomorphism and the adoption of information technology for supply chain management, Computers in Industry 57(1): 93–98. https://doi.org/10.1016/j.compind.2005.05.002

Li, S.; Lin, B. 2006. Accessing information sharing and information quality in supply chain management, Decision Support Systems 42(3): 1641–1656. https://doi.org/10.1016/j.dss.2006.02.011

Lin, C.; Tseng, H. 2006. Identifying the pivotal role of participation strategies and information technology application for supply chain excellence, Industrial Management & Data Systems 106(5): 739–756. https://doi.org/10.1108/02635570610666476

Liu, H.; Ke, W.; Wei, K. K.; Gu, J.; Chen, H. 2010. The role of institutional pressures and organizational culture in the firm's intention to adopt internet-enabled supply chain management systems, Journal of Operations Management 28(5): 372–384. https://doi.org/10.1016/j.jom.2009.11.010

Liu, H.; Ke, W.; Wei, K. K.; Hua, Z. 2013. The impact of IT capabilities on firm performance: the mediating roles of absorptive capacity and supply chain agility, Decision Support Systems 54(3): 1452–1462. https://doi.org/10.1016/j.dss.2012.12.016

Liu, Z.; Prajogo, D.; Oke, A. 2016. Supply chain technologies: linking adoption, utilization, and performance, Journal of Supply Chain Management 52(4): 22–41. https://doi.org/10.1111/jscm.12117

Mabert, V. A.; Soni, A.; Venkataramanan, M. A. 2003. The impact of organization size on enterprise resource planning (ERP) implementations in the US manufacturing sector, Omega: the International Journal of Management Science 31(3): 235–246. https://doi.org/10.1016/S0305-0483(03)00022-7

Madu, C. N.; Kuei, C.-H.; Jacob, R. A. 1996. An empirical assessment of the influence of quality dimensions on organizational performance, International Journal of Production Research 34(7): 1943–1962. https://doi.org/10.1080/00207549608905006

Malekifar, S.; Taghizadeh, S. K.; Rahman, S. A.; Khan, S. U. R. 2014. Organizational culture, IT competence, and supply chain agility in small and medium-size enterprises, Global Business and Organizational Excellence 33(6): 69–75. https://doi.org/10.1002/joe.21574

Mamillo, D. 2014. The effect of organization culture and uncertainty in supply chain management – the Albanian beer industry, Theory, Methodology, Practice 10(2): 49–57.

Marcoulides, G. A.; Saunders, C. 2006. PLS: a silver bullet?, MIS Quarterly 30(2): 3–9. https://doi.org/10.2307/25148727

Mishra, S.; Modi, S. B.; Animesh, A. 2013. The relationship between information technology capability, inventory efficiency, and shareholder wealth: a firm-level empirical analysis, Journal of Operations Management 31(6): 298–312. https://doi.org/10.1016/j.jom.2013.07.006

Nasri, W.; Charfeddine, L. 2012. Factors affecting the adoption of Internet banking in Tunisia: An integration theory of acceptance model and theory of planned behavior, The Journal of High Technology Management Research 23(1): 1–14. https://doi.org/10.1016/j.hitech.2012.03.001

Navimipour, N. J.; Soltani, Z. 2016. The impact of cost, technology acceptance and employees’ satisfaction on the effectiveness of the electronic customer relationship management systems, Computers in Human Behavior 55: 1052–1066. https://doi.org/10.1016/j.chb.2015.10.036

Ngai, E. W. T.; Chau, D. C. K.; Chan, T. L. A. 2011. Information technology, operational, and management competencies for supply chain agility: findings from case studies, The Journal of Strategic Information Systems 20(3): 232–249. https://doi.org/10.1016/j.jsis.2010.11.002

Nunnally, J. C. 1967. Psychometric Theory. McGraw-Hill. 640 p.

Oh, S.; Ryu, Y. U.; Yang, H. 2016. Supply chain capabilities and information technology characteristics: interaction effects on firm performance, in 2016 49th Hawaii International Conference on System Sciences (HICSS), 5–8 January 2016, Koloa, HI, USA, 1417–1425. https://doi.org/10.1109/HICSS.2016.179

Persona, A.; Regattieri, A.; Pham, H.; Battini, D. 2007. Remote control and maintenance outsourcing networks and its applications in supply chain management, Journal of Operations Management 25(6): 1275–1291. https://doi.org/10.1016/j.jom.2007.01.018

Pi, S.-M.; Chou, C.-H.; Liao, H.-L. 2013. A study of Facebook Groups members’ knowledge sharing, Computers in Human Behavior 29(5): 1971–1979. https://doi.org/10.1016/j.chb.2013.04.019

Prajogo, D.; Olhager, J. 2012. Supply chain integration and performance: the effects of long-term relationships, information technology and sharing, and logistics integration, International Journal of Production Economics 135(1): 514–522. https://doi.org/10.1016/j.ijpe.2011.09.001

Premkumar, G.; King, W. R. 1994. The evaluation of strategic information system planning, Information & Management 26(6): 327–340. https://doi.org/10.1016/0378-7206(94)90030-2

Ramayah, T.; Yeap, J. A. L.; Ignatius, J. 2013. An empirical inquiry on knowledge sharing among academicians in higher learning institutions, Minerva 51(2): 131–154. https://doi.org/10.1007/s11024-013-9229-7

Reich, B. H.; Benbasat, I. 2000. Factors that influence the social dimension of alignment between business and information technology objectives, MIS Quarterly 24(1): 81–113. https://doi.org/10.2307/3250980

Rogers, E. M. 2003. Diffusion of Innovations. 5th edition. Free Press. 576 p.

Rostamzadeh, R.; Sabaghi, M.; Sofian, S.; Ismail, Z. 2015. Hybrid GA for material routing optimization in supply chain, Applied Soft Computing 26: 107–122. https://doi.org/10.1016/j.asoc.2014.09.033

Rubin, B.; Fernandes, R.; Avgerinou, M. D. 2013. The effects of technology on the community of inquiry and satisfaction with online courses, The Internet and Higher Education 17: 48–57. https://doi.org/10.1016/j.iheduc.2012.09.006

Russell, D. M.; Hoag, A. M. 2004. People and information technology in the supply chain: social and organizational influences on adoption, International Journal of Physical Distribution & Logistics Management 34(2): 102–122. https://doi.org/10.1108/09600030410526914

Saeed, K. A.; Abdinnour, S.; Lengnick‐Hall, M. L.; Lengnick‐Hall, C. A. 2010. Examining the impact of pre‐implementation expectations on post‐implementation use of enterprise systems: a longitudinal study, Decision Sciences 41(4): 659–688. https://doi.org/10.1111/j.1540-5915.2010.00285.x

Saldanha, J. P.; Mello, J. E.; Knemeyer, A. M.; Vijayaraghavan, T. A. S. 2015. Implementing supply chain technologies in emerging markets: an institutional theory perspective, Journal of Supply Chain Management 51(1): 5–26. https://doi.org/10.1111/jscm.12065

Saraf, N.; Langdon, C. S.; Gosain, S. 2007. IS application capabilities and relational value in interfirm partnerships, Information Systems Research 18(3): 320–339. https://doi.org/10.1287/isre.1070.0133

Schein, E. H. 1990. Organizational culture, American Psychologist 45(2): 109–119. https://doi.org/10.1037/0003-066X.45.2.109

Schulte, M.; Ostroff, C.; Shmulyian, S.; Kinicki, A. 2009. Organizational climate configurations: relationships to collective attitudes, customer satisfaction, and financial performance, Journal of applied psychology 94(3): 618–634. https://doi.org/10.1037/a0014365

Simchi-Levi, D.; Kaminsky, P.; Simchi-Levi, E. 1999. Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies. McGraw-Hill.

Singhry, H. B.; Rahman, A. A.; Imm, N. S. 2016. Effect of advanced manufacturing technology, concurrent engineering of product design, and supply chain performance of manufacturing companies, The International Journal of Advanced Manufacturing Technology 86(1–4): 663–669. https://doi.org/10.1007/s00170-015-8219-3

Tenenhaus, M.; Vinzi, V. E.; Chatelin, Y.-M.; Lauro, C. 2005. PLS path modeling, Computational Statistics & Data Analysis 48(1): 159–205. https://doi.org/10.1016/j.csda.2004.03.005

Vanpoucke, E.; Vereecke, A.; Muylle, S. 2017. Leveraging the impact of supply chain integration through information technology, International Journal of Operations & Production Management 37(4): 510–530. https://doi.org/10.1108/IJOPM-07-2015-0441

Walker, O. C.; Ruekert, R. W. 1987. Marketing’s role in the implementation of business strategies: a critical review and conceptual framework, The Journal of Marketing 51(3): 15–33. https://doi.org/10.2307/1251645

Wetzels, M.; Odekerken-Schröder, G.; Van Oppen, C. 2009. Using PLS path modeling for assessing hierarchical construct models: guidelines and empirical illustration, MIS Quarterly 33(1): 177–195. https://doi.org/10.2307/20650284

White, A.; Daniel, E. M.; Mohdzain, M. 2005. The role of emergent information technologies and systems in enabling supply chain agility, International Journal of Information Management 25(5): 396–410. https://doi.org/10.1016/j.ijinfomgt.2005.06.009

Wold, H. 1985. Systems analysis by partial least squares, in P. Nijkamp, L. Leitner, N. Wrigley (Eds.). Measuring the Unmeasurable, 221–252.

Wu, F.; Yeniyurt, S.; Kim, D.; Cavusgil, S. T. 2006. The impact of information technology on supply chain capabilities and firm performance: a resource-based view, Industrial Marketing Management 35(4): 493–504. https://doi.org/10.1016/j.indmarman.2005.05.003

Wu, I.-L.; Chiu, M.-L. 2018. Examining supply chain collaboration with determinants and performance impact: social capital, justice, and technology use perspectives, International Journal of Information Management 39: 5–19. https://doi.org/10.1016/j.ijinfomgt.2017.11.004

Yan, D.; Sengupta, J. 2011. Effects of construal level on the price-quality relationship, Journal of Consumer Research 38(2): 376–389. https://doi.org/10.1086/659755

Ye, F.; Wang, Z. 2013. Effects of information technology alignment and information sharing on supply chain operational performance, Computers & Industrial Engineering 65(3): 370–377. https://doi.org/10.1016/j.cie.2013.03.012

Zhang, C.; Dhaliwal, J. 2009. An investigation of resource-based and institutional theoretic factors in technology adoption for operations and supply chain management, International Journal of Production Economics 120(1): 252–269. https://doi.org/10.1016/j.ijpe.2008.07.023

Zhu, K.; Kraemer, K. L.; Gurbaxani, V.; Xu, S. X. 2006. Migration to open-standard interorganizational systems: network effects, switching costs, and path dependency, MIS Quarterly 30: 515–539. https://doi.org/10.2307/25148771