Share:


Experimental and numerical investigation of Long Glass Fiber Reinforced Polypropylene composite and application in automobile components

    Shuyong Duan Affiliation
    ; Xujing Yang Affiliation
    ; Yourui Tao Affiliation
    ; Fuhao Mo Affiliation
    ; Zhi Xiao Affiliation
    ; Kai Wei Affiliation

Abstract

Due to the good mechanical performances and design flexibility of Long Glass Fiber Reinforced Polypropyl-ene (LGFRP) composite, it has been increasingly used in the automotive components, in which the LGFRP components are likely to sustain different strain rates loading during a crash event. This study aims to investigate the correlations between the LGFRP and strain rate, which will be applied to crash-worthiness and energy absorbing property analysis of a bumper beam under the longitudinal impact. Firstly, strain rate dependent material properties are determined, for which the experimental procedure is explained in detail on the tensile specimens of long glass fiber and polypropylene matrix based composite configurations. The gained experimental results provide the input parameters for a numerical analysis of specimens. The numerical results of properties are compared with those from tests. The constitutive model that fits for LGFRP is employed to crash-worthiness and energy absorbing property analysis of a bumper beam under the longitudinal impact.


First Published Online: 17 May 2017

Keyword : automobile, weight, stress, numerical simulation, parameter, crash-worthiness, bumper beam

How to Cite
Duan, S., Yang, X., Tao, Y., Mo, F., Xiao, Z., & Wei, K. (2018). Experimental and numerical investigation of Long Glass Fiber Reinforced Polypropylene composite and application in automobile components. Transport, 33(5), 1135-1143. https://doi.org/10.3846/16484142.2017.1323231
Published in Issue
Dec 11, 2018
Abstract Views
1236
PDF Downloads
982
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Bai, S.-L.; Cao, K.; Chen, J.-K.; Liu, Z.-D. 2000. Tensile properties of rigid glass bead/HDPE composites, Polymers & Polymer Composites 8(6): 413–418.

Bartus, S. D.; Vaidya, U. K.; Ulven, C. A. 2006. Design and development of a long fiber thermoplastic bus seat, Journal of Thermoplastic Composite Materials 19(2): 131–154. https://doi.org/10.1177/0892705706062184

Daniel, I. M.; Werner, B. T.; Fenner, J. S. 2011. Strain-rate-dependent failure criteria for composites, Composites Science and Technology 71(3): 357–364. https://doi.org/10.1016/j.compscitech.2010.11.028

Fang, Q.-Z.; Wang, T. J.; Li, H.-M. 2006. Large tensile deformation behavior of PC/ABS alloy, Polymer 47(14): 5174–5181. https://doi.org/10.1016/j.polymer.2006.04.069

GB/T 1447-2005. Fiber-Reinforced Plastics Composites. Determination of Tensile Properties. Code of China (Chinese Standard).

Groves, S. E.; Sanchez, R. J.; Lyon, R. E.; Brown, A. E. 1993. High strain rate effects for composite materials, in E. T. Camponeschi (Ed.). Composite Materials: Testing and Design, 162–176. https://doi.org/10.1520/STP12626S

Hufenbach, W.; Gude, M.; Ebert, C.; Zscheyge, M.; Horning, A. 2011. Strain rate dependent low velocity impact response of layerwise 3D-reinforced composite structures, International Journal of Impact Engineering 38(5): 358–368. https://doi.org/10.1016/j.ijimpeng.2010.12.004

LSTC. 2007. LS-DYNA Keyword User’s Manual. Vol. 1. Version 971. Livermore Software Technology Corporation (LSTC). Available from Internet: http://lstc.com/pdf/lsdyna_971_manual_k.pdf

Jerabek, M.; Major, Z.; Lang, R. W. 2010. Strain determination of polymeric materials using digital image correlation, Polymer Testing 29(3): 407–416. https://doi.org/10.1016/j.polymertesting.2010.01.005

Brown, K. A.; Brooks, R.; Warrior, N. A. 2009. Characterizing the strain rate sensitivity of the tensile mechanical properties of a thermoplastic composite, JOM 61(1): 43–46. https://doi.org/10.1007/s11837-009-0007-9

Brown, K. A.; Brooks, R.; Warrior, N. A. 2010. The static and high strain rate behaviour of a commingled E-glass/polypropylene woven fabric composite, Composites Science and Technology 70(2): 272–283. https://doi.org/10.1016/j.compscitech.2009.10.018

Liu, Q.; Lin, Y.; Zong, Z.; Sun, G.; Li, Q. 2013. Lightweight design of carbon twill weave fabric composite body structure for electric vehicle, Composite Structures 97: 231–238. https://doi.org/10.1016/j.compstruct.2012.09.052

Ning, H.; Pillay, S.; Vaidya, U. K. 2009. Design and development of thermoplastic composite roof door for mass transit bus, Materials & Design 30(4): 983–991. https://doi.org/10.1016/j.matdes.2008.06.066

Ning, H.; Janowski, G. M.; Vaidya, U. K.; Husman, G. 2007a. Thermoplastic sandwich structure design and manufacturing for the body panel of mass transit vehicle, Composite Structures 80(1): 82–91. https://doi.org/10.1016/j.compstruct.2006.04.090

Ning, H.; Vaidya, U.; Janowski, G. M.; Husman, G. 2007b. Design, manufacture and analysis of a thermoplastic composite frame structure for mass transit, Composite Structures 80(1): 105–116. https://doi.org/10.1016/j.compstruct.2006.04.036

Okoli, O. I. 2001. The effects of strain rate and failure modes on the failure energy of fibre reinforced composites, Composite Structures 54(2–3): 299–303. http://doi.org/10.1016/S0263-8223(01)00101-5

Parsons, E.; Boyce, M. C.; Parks, D. M. 2004. An experimental investigation of the large-strain tensile behavior of neat and rubber-toughened polycarbonate, Polymer 45(8): 2665–2684. https://doi.org/10.1016/j.polymer.2004.01.068

Parsons, E. M.; Boyce, M. C.; Parks, D. M.; Weinberg, M. 2005. Three-dimensional large-strain tensile deformation of neat and calcium carbonate-filled high-density polyethylene, Polymer 46(7): 2257–2265. https://doi.org/10.1016/j.polymer.2005.01.045

Papadakis, N.; Reynolds, N.; Pharaoh, M. W.; Wood, P. K. C.; Smith, G. F. 2004. Strain rate effects on the shear mechanical properties of a highly oriented thermoplastic composite material using a contacting displacement measurement methodology – part A: elasticity and shear strength, Composites Science and Technology 64(5): 729–738. https://doi.org/10.1016/j.compscitech.2003.08.001

Reis, J. M. L.; Coelho, J. L. V.; Monteiro, A. H.; Da Costa Mattos, H. S. 2012. Tensile behavior of glass/epoxy laminates at varying strain rates and temperatures, Composites Part B: Engineering 43(4): 2041–2046. https://doi.org/10.1016/j.compositesb.2012.02.005

Şerban, D. A.; Weber, G.; Marşavina, L.; Silberschmidt, V. V.; Hufenbach, W. 2013. Tensile properties of semi-crystalline thermoplastic polymers: effects of temperature and strain rates, Polymer Testing 32(2): 413–425. https://doi.org/10.1016/j.polymertesting.2012.12.002

Törnqvist, R.; Baser, B. 2002. Structural modules with improved crash performance using thermoplastic composites, SAE Technical Paper 2002-01-1038. https://doi.org/10.4271/2002-01-1038

Thattaiparthasarathy, K. B.; Pillay, S.; Ning, H.; Vaidya, U. K. 2008. Process simulation, design and manufacturing of a long fiber thermoplastic composite for mass transit application, Composites Part A: Applied Science and Manufacturing 39(9): 1512–1521. https://doi.org/10.1016/j.compositesa.2008.05.017

UN. 1980. Uniform Provisions Concerning the Approval of: Vehicles with Regard to their Front and Rear Protective Devices (Bumpers, etc). Regulation No. 42-00. United Nations (UN).15 p.

Vaidya, U. K.; Samalot, F.; Pillay, S.; Janowski, G. M.; Husman, G.; Gleich, K. 2004. Design and manufacture of woven reinforced glass/polypropylene composites for mass transit floor structure, Journal of Composite Materials 38(21):1949–1971. https://doi.org/10.1177/0021998304048418