Share:


Subgrade performance assessment for rigid runway using long-term pavement performance database

    Guo-Guang Liu Affiliation
    ; Lei-Yang Pei Affiliation
    ; Zhi-Wei Wu Affiliation

Abstract

Maintaining desired subgrade performance is an effective way to reduce runway pavement deterioration. Due to lack of extensive field test data, life-cycle performance of runway subgrade has not been fully understood. In order to quantitatively estimate subgrade condition, a novel method of evaluating subgrade performance was developed and validated using the 726 sets of Heavy Weight Deflectometer (HWD) test data of ten runway sections. Statistical analysis demonstrates that the structural behaviour of rigid runway subgrade follows normal distribution in different service stages and can be efficiently evaluated by the subgrade performance index (ψ). The results of factor analysis show that Accumulated Air Traffic Volume (ATV) during service life is the major cause of spatial variations in subgrade condition. In the designed service period of runway, it validates that sea-reclaimed subgrade results in faster degradation in the initial stage of service life while thicker pavement exhibits better capability in protecting the subgrade soil in long-term view. Besides, the differences in applied loads and pavement thickness give rise to the subgrade performance variation in longitudinal direction. Meanwhile, the comparison between the main and the less trafficked test lines in transversal direction reveals that the aircraft impacts play a positive role in resisting the natural fatigue process. By the suggested method, subgrade performance of HWD test points can be categorized into 4 levels from “Excellent”, “Good”, “Fair” to “Poor” based on ψ value. It is helpful for airport agency to make scientific decisions on Maintenance and Rehabilitation (M&R) treatment by calculating the effective area of envelope (β) using the ratio of subgrade performance (η).

Keyword : rigid runway, subgrade performance assessment, subgrade performance index, long-term pavement performance, heavy weight deflectometer, envelope method

How to Cite
Liu, G.-G., Pei, L.-Y., & Wu, Z.-W. (2024). Subgrade performance assessment for rigid runway using long-term pavement performance database. Transport, 39(2), 161–173. https://doi.org/10.3846/transport.2024.20542
Published in Issue
Oct 29, 2024
Abstract Views
158
PDF Downloads
176
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ahmed, A. W.; Erlingsson, S. 2017. Numerical validation of viscoelastic responses of a pavement structure in a full-scale accelerated pavement test, International Journal of Pavement Engineering 18(1): 47–59. https://doi.org/10.1080/10298436.2015.1039003

Alkasawneh, W.; Pan, E.; Han, F.; Zhu, R.; Green, R. 2007. Effect of temperature variation on pavement responses using 3D multilayered elastic analysis, International Journal of Pavement Engineering 8(3): 203–212. https://doi.org/10.1080/10298430601116741

Aydin, M. M.; Topal, A. 2019. Effects of pavement surface deformations on traffic flow, Transport 34(2): 204–214. https://doi.org/10.3846/transport.2019.8631

Biancardo, S. A.; Abbondati, F.; Russo, F.; Veropalumbo, R.; Dell’Acqua, G. 2020. A broad-based decision-making procedure for runway friction decay analysis in maintenance operations, Sustainability 12(9): 3516. https://doi.org/10.3390/su12093516

Chai, G. W.; Kelly, G. 2008. Characterization of LTPP pavements using falling weight deflectometer, in 6th International Conference on Road and Airfield Pavement Technology, 20–23 July 2008, Sapporo, Japan, 1–9. Available from Internet: http://hdl.handle.net/10072/23636

Chai, G. W.; Kelly, G.; Huang, T.-T.; Chowdhury, S. H.; Golding, A.; Manoharan, S. 2018. New approaches for modelling subgrade nonlinearity in thin surfaced flexible pavements, International Journal of Pavement Engineering 19(2): 122–130. https://doi.org/10.1080/10298436.2016.1172706

Cunliffe, C.; Mehta, Y. A.; Cleary, D.; Ali, A.; Redles, T. 2016. Impact of dynamic loading on backcalculated stiffness of rigid airfield pavements, International Journal of Pavement Engineering 17(6): 489–502. https://doi.org/10.1080/10298436.2014.993395

Dai, Y.; Zhong, Z.; Tong, P. 2003. Transient response of airport runway, Key Engineering Materials 243–244: 135–140. https://doi.org/10.4028/www.scientific.net/kem.243-244.135

De Luca, M.; Abbondati, F.; Yager, T. J.; Dell’Acqua, G. 2016. Field measurements on runway friction decay related to rubber deposits, Transport 31(2): 177–182. https://doi.org/10.3846/16484142.2016.1192062

Dong, Z.; Ma, X.; Shao, X. 2018. Airport pavement responses obtained from wireless sensing network upon digital signal processing, International Journal of Pavement Engineering 19(5): 381–390. https://doi.org/10.1080/10298436.2017.1402601

El-Raof, H. S. A.; El-Hakim, R. T. A.; El-Badawy, S. M.; Afify, H. A. 2020. Structural number prediction for flexible pavements using the long term pavement performance data, International Journal of Pavement Engineering 21(7): 841–855. https://doi.org/10.1080/10298436.2018.1511786

Feng, J.; Zhang, L.; Gao, L.; Feng, S. 2018. Stability of railway embankment of China under extreme storms, Environmental Geotechnics 6(5): 269–283. https://doi.org/10.1680/jenge.17.00043

Gopalakrishnan, K. 2008. Predicting capacities of runways serving new large aircraft, Transport 23(1): 44–50. https://doi.org/10.3846/1648-4142.2008.23.44-50

Gopalakrishnan, K.; Thompson, M. R. 2006. Severity effects of dual-tandem and dual-tridem repeated heavier aircraft gear loading on pavement rutting performance, International Journal of Pavement Engineering 7(3): 179–190. https://doi.org/10.1080/10298430600704232

ICAO. 2022. Aerodrome Design Manual: Part 3 – Pavements. Doc 9157. Part 3. 3rd edition. International Civil Aviation Organization (ICAO). Available from Internet: https://store.icao.int/en/aerodrome-design-manual-part-3-pavements-doc-9157-part-3

Imran, S. A.; Barman, M.; Nazari, M.; Commuri, S.; Zaman, M.; Singh, D. 2016. Continuous monitoring of subgrade stiffness during compaction, Transportation Research Procedia 17: 617–625. https://doi.org/10.1016/j.trpro.2016.11.116

Ioannides, A. M. 2006. Concrete pavement analysis: the first eighty years, International Journal of Pavement Engineering 7(4): 233–249. https://doi.org/10.1080/10298430600798481

Ioannides, A. M. 1991. Theoretical Implications of the AASHTO 1986 nondestructive testing method 2 for pavement evaluation, Transportation Research Record 1307: 211–220. Available from Internet: https://onlinepubs.trb.org/Onlinepubs/trr/1991/1307/1307-024.pdf

Jia, J.; Liu, H.; Wan, Y.; Qi, K. 2020. Impact of vibration compaction on the paving density and transverse uniformity of hot paving layer, International Journal of Pavement Engineering 21(3): 289–303. https://doi.org/10.1080/10298436.2018.1464656

Khavassefat, P.; Jelagin, D.; Birgisson, B. 2016. The non-stationary response of flexible pavements to moving loads, International Journal of Pavement Engineering 17(5): 458–470. https://doi.org/10.1080/10298436.2014.993394

Khoury, I.; Sargand, S.; Hatton, D. C. 2022. Impact of base type on performance of rigid pavement: a case study, International Journal of Pavement Engineering 23(3): 888–999. https://doi.org/10.1080/10298436.2020.1778691

Kim, I. T.; Tutumluer, E. 2005. Unbound aggregate rutting models for stress rotations and effects of moving wheel loads, Transportation Research Record: Journal of the Transportation Research Board 1913(1): 41–49. https://doi.org/10.1177/0361198105191300105

Lak, M. A.; Degrande, G.; Lombaert, G. 2011. The effect of road unevenness on the dynamic vehicle response and ground-borne vibrations due to road traffic, Soil Dynamics and Earthquake Engineering 31(10): 1357–1377. https://doi.org/10.1016/j.soildyn.2011.04.009

Lin, J.-H. 2014. Variations in dynamic vehicle load on road pavement, International Journal of Pavement Engineering 15(6): 558–563. https://doi.org/10.1080/10298436.2013.770512

Liu, G.; Niu, F.; Wu, Z. 2020. Life-cycle performance prediction for rigid runway pavement using artificial neural network, International Journal of Pavement Engineering 21(14): 1806–1814. https://doi.org/10.1080/10298436.2019.1567922

Loizos, A.; Charonitis, G. 2004. Bearing capacity and structural classification of flexible airport pavements, Journal of Transportation Engineering 130(1): 34–42. https://doi.org/10.1061/(ASCE)0733-947X(2004)130:1(34)

Malla, R. B.; Joshi, S. 2008. Subgrade resilient modulus prediction models for coarse and fine-grained soils based on long-term pavement performance data, International Journal of Pavement Engineering 9(6): 431–444. https://doi.org/10.1080/10298430802279835

Mshali, M. R. S.; Steyn, W. J. 2022. Effect of truck speed on the response of flexible pavement systems to traffic loading, International Journal of Pavement Engineering 23(4): 1213–1225. https://doi.org/10.1080/10298436.2020.1797733

Papadopoulos, E.; Cortes, D. D.; Santamarina, J. C. 2016. In-situ assessment of the stress-dependent stiffness of unbound aggregate bases: application in inverted base pavements, International Journal of Pavement Engineering 17(10): 870–877. https://doi.org/10.1080/10298436.2015.1022779

Papagiannakis, A. T.; Zelelew, H. M.; Muhunthan, B. 2007. A wavelet interpretation of vehicle-pavement interaction, International Journal of Pavement Engineering 8(3): 245–252. https://doi.org/10.1080/10298430701309378

Park, H. M.; Chung, M. K.; Lee, Y. A.; Kim, B. I. 2013. A study on the correlation between soil properties and subgrade stiffness using the long-term pavement performance data, International Journal of Pavement Engineering 14(2): 146–153. https://doi.org/10.1080/10298436.2011.633167

Rahim, A. M.; George, K. P. 2005. Models to estimate subgrade resilient modulus for pavement design, International Journal of Pavement Engineering 6(2): 89–96. https://doi.org/10.1080/10298430500131973

Rameshkhah, S.; Olounabadi, M. M.; Malekzadeh, P.; Meraji, S. H. 2020. Dynamic response analysis of viscoelastic pavement using differential quadrature element method, International Journal of Pavement Engineering 21(11): 1321–1335. https://doi.org/10.1080/10298436.2018.1545091

Rushing, J. F.; Darabi, M. K.; Rahmani, E.; Little, D. N. 2017. Comparing rutting of airfield pavements to simulations using pavement analysis using nonlinear damage approach (PANDA), International Journal of Pavement Engineering 18(2): 138–159. https://doi.org/10.1080/10298436.2015.1039007

Sangghaleh, A.; Pan, E.; Green, R.; Wang, R.; Liu, X.; Cai, Y. 2014. Backcalculation of pavement layer elastic modulus and thickness with measurement errors, International Journal of Pavement Engineering 15(6): 521–531. https://doi.org/10.1080/10298436.2013.786078

Shi, Z.; Wang, K.; Zhang, D.; Chen, Z.; Zhai, G.; Huang, D. 2019. Experimental investigation on dynamic behaviour of heavy-haul railway track induced by heavy axle load, Transport 34(3): 351–362. https://doi.org/10.3846/transport.2019.10325

Snehasagar, G.; Krishnanunni, C. G.; Rao, B. N. 2020. Dynamics of vehicle–pavement system based on a viscoelastic Euler–Bernoulli beam model, International Journal of Pavement Engineering 21(13): 1669–1682. https://doi.org/10.1080/10298436.2018.1562189

Taheri, A.; Obrien, E. J; Collop, A. C. 2012. Pavement damage model incorporating vehicle dynamics and a 3D pavement surface, International Journal of Pavement Engineering 13(4): 374–383. https://doi.org/10.1080/10298436.2012.655741

Toll, D. G.; Rahim, M. S. M.; Karthikeyan, M.; Tsaparas, I. 2019. Soil–atmosphere interactions for analysing slopes in tropical soils in Singapore, Environmental Geotechnics 6(6): 361–372. https://doi.org/10.1680/jenge.15.00071

Vardon, P. J. 2015. Climatic influence on geotechnical infrastructure: a review, Environmental Geotechnics: 2(3): 166–174. https://doi.org/10.1680/envgeo.13.00055

Wang, H.; Li, M.; Garg, N. 2015. Airfield flexible pavement responses under heavy aircraft and high tire pressure loading, Transportation Research Record: Journal of the Transportation Research Board 2501: 31–39. https://doi.org/10.3141/2501-05

Wang, H.; Li, M.; Garg, N.; Zhao, J. 2020. Multi-wheel gear loading effect on load-induced failure potential of airfield flexible pavement, International Journal of Pavement Engineering 21(6): 805–816. https://doi.org/10.1080/10298436.2018.1511783

White, G. 2017. Limitations and potential improvement of the aircraft pavement strength rating system to protect airport asphalt surfaces, International Journal of Pavement Engineering 18(12): 1111–1121. https://doi.org/10.1080/10298436.2016.1155122

Xue, W.; Weaver, E. 2015. Influence of tyre configuration on pavement response and predicted distress, International Journal of Pavement Engineering 16(6): 538–548. https://doi.org/10.1080/10298436.2014.943206

Yang, J.-Q.; Cui, Z.-D. 2020. Influences of train speed on permanent deformation of saturated soft soil under partial drainage conditions, Soil Dynamics and Earthquake Engineering 133: 106120. https://doi.org/10.1016/j.soildyn.2020.106120

Yang, S.; Chen, L.; Li, S. 2015. Dynamics of Vehicle–Road Coupled System. Springer. 327 p. https://doi.org/10.1007/978-3-662-45957-7