Share:


Mathematical modelling as an element of planning rail transport strategies

    Anna Borucka Affiliation
    ; Dariusz Mazurkiewicz Affiliation
    ; Eliza Łagowska Affiliation

Abstract

Effective planning and optimization of rail transport operations depends on effective and reliable forecasting of demand. The results of transport performance forecasts usually differ from measured values because the mathematical models used are inadequate. In response to this applicative need, we report the results of a study whose goal was to develop, on the basis of historical data, an effective mathematical model of rail passenger transport performance that would allow to make reliable forecasts of future demand for this service. Several models dedicated to this type of empirical data were proposed and selection criteria were established. The models used in the study are: the seasonal naive model, the Exponential Smoothing (ETS) model, the exponential smoothing state space model with Box–Cox transformation, ARMA errors, trigonometric trend and seasonal components (TBATS) model, and the AutoRegressive Integrated Moving Average (ARIMA) model. The proposed time series identification and forecasting methods are dedicated to the processing of time series data with trend and seasonality. Then, the best model was identified and its accuracy and effectiveness were assessed. It was noticed that investigated time series is characterized by strong seasonality and an upward trend. This information is important for planning a development strategy for rail passenger transport, because it shows that additional investments and engagement in the development of both transport infrastructure and superstructure are required to meet the existing demand. Finally, a forecast of transport performance in sequential periods of time was presented. Such forecast may significantly improve the system of scheduling train journeys and determining the level of demand for rolling stock depending on the season and the annual rise in passenger numbers, increasing the effectiveness of management of rail transport.

Keyword : time series, mathematical modelling, forecasting of transport performance, rail transport management, optimization

How to Cite
Borucka, A., Mazurkiewicz, D., & Łagowska, E. (2021). Mathematical modelling as an element of planning rail transport strategies. Transport, 36(4), 354-363. https://doi.org/10.3846/transport.2021.16043
Published in Issue
Dec 7, 2021
Abstract Views
646
PDF Downloads
470
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Andersson, M.; Brundell-Freij, K.; Eliasson, J. 2017. Validation of aggregate reference forecasts for passenger transport, Transportation Research Part A: Policy and Practice 96: 101–118. https://doi.org/10.1016/j.tra.2016.12.008

Baležentis, A.; Baležentis, T. 2011. Assessing the efficiency of Lithuanian transport sector by applying the methods of MULTIMOORA and data envelopment analysis, Transport 26(3): 263–270. https://doi.org/10.3846/16484142.2011.621146

Banerjee, N.; Morton, A.; Akartunalı, K. 2020. Passenger demand forecasting in scheduled transportation, European Journal of Operational Research 286(3): 797–810. https://doi.org/10.1016/j.ejor.2019.10.032

Bureika, G.; Gaidamauskas, E.; Kupinas, J.; Bogdevičius, M.; Steišūnas, S. 2017. Modelling the assessment of traffic risk at level crossing of Lithuanian railways, Transport 32(3): 282–290. https://doi.org/10.3846/16484142.2016.1244114

Dolinayova, A.; Danis, J.; Cerna, L. 2018. Regional railways transport – effectiveness of the regional railway line, in A. Fraszczyk, M. Marinov (Eds.). Sustainable Rail Transport, 181–200. https://doi.org/10.1007/978-3-319-78544-8_10

Duranton, S.; Audier, A.; Hazan, J.; Langhorn, M. P.; Gauche, V. 2017. The 2017 European Railway Performance Index. Boston Consulting Group, Boston, MA, US. Available from Internet: https://www.bcg.com/publications/2017/transportation-travel-tourism-2017-european-railway-performance-index

EEA. 2021. National Emissions Reported to the UNFCCC and to the EU Greenhouse Gas Monitoring Mechanism. European Environment Agency (EEA). Available from Internet: https://www.eea.europa.eu/data-and-maps/data/national-emissionsreported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-17

Gao, H.; Xu, J.; Li, S.; Xu, L. 2019. Forecast of passenger flow under the interruption of urban rail transit operation, Lecture Notes in Electrical Engineering 639: 283–291. https://doi.org/10.1007/978-981-15-2866-8_27

Hyndman, R.; Koehler, A.; Ord, K.; Snyder, R. 2008. Forecasting with Exponential Smoothing: the State Space Approach. Springer. 362 p. https://doi.org/10.1007/978-3-540-71918-2

Jarašūnienė, A.; Čižiūnienė, K.; Petraška, A. 2019. Research on rail and maritime transport interoperability in the area of information systems: the case of Lithuania, Transport 34(4): 467–475. https://doi.org/10.3846/transport.2019.11236

Jarašūnienė, A.; Sinkevičius, G.; Čižiūnienė, K.; Čereška, A. 2020. Adaptation of the management model of internationalization processes in the development of railway transport activities, Sustainability 12(15): 6248. https://doi.org/10.3390/su12156248

Jonaitis, J. 2007. Planning of the amount of trains needed for transportation by rail, Transport 22(2): 83–89. https://doi.org/10.3846/16484142.2007.9638104

Kang, R.; Wang, J.; Cheng, J.; Chen, J.; Pang, Y. 2019. Intelligent forecasting of automatic train protection system failure rate in China high-speed railway, Eksploatacja i Niezawodność – Maintenance and Reliability 21(4): 567–576. https://doi.org/10.17531/ein.2019.4.5

Konowrocki, R.; Chojnacki, A. 2020. Analysis of rail vehicles’ operational reliability in the aspect of safety against derailment based on various methods of determining the assessment criterion, Eksploatacja i Niezawodność – Maintenance and Reliability 22(1): 73–85. https://doi.org/10.17531/ein.2020.1.9

Kosicka, E.; Kozłowski, E.; Mazurkiewicz, D. 2018. Intelligent systems of forecasting the failure of machinery park and supporting fulfilment of orders of spare parts, Advances in Intelligent Systems and Computing 637: 54–63. https://doi.org/10.1007/978-3-319-64465-3_6

Kozłowski, E. 2015. Analiza i identyfikacja szeregów czasowych. Politechnika Lubelska. 273 s. (in Polish).

Kozłowski, E.; Kowalska, B.; Kowalski, D.; Mazurkiewicz, D. 2018. Water demand forecasting by trend and harmonic analysis, Archives of Civil and Mechanical Engineering 18(1): 140–148. https://doi.org/10.1016/j.acme.2017.05.006

Kozłowski, E.; Kowalska, B.; Kowalski, D.; Mazurkiewicz, D. 2019a. Survival function in the analysis of the factors influencing the reliability of water wells operation, Water Resources Management 33(14): 4909–4921. https://doi.org/10.1007/s11269-019-02419-0

Kozłowski, E.; Mazurkiewicz, D.; Kowalska, B.; Kowalski, D. 2019b. Application of a multidimensional scaling method to identify the factors influencing on reliability of deep wells, Advances in Intelligent Systems and Computing 835: 56–65. https://doi.org/10.1007/978-3-319-97490-3_6

Kozłowski, E.; Mazurkiewicz, D.; Żabiński, T.; Prucnal, S.; Sęp, J. 2020. Machining sensor data management for operationlevel predictive model, Expert Systems with Applications 159: 113600. https://doi.org/10.1016/j.eswa.2020.113600

Liu, J.; Wang, H. 2007. Passengers and goods transportation volume forecast and SWOT analysis of Xiaoyong railway, Journal of Lanzhou Jiaotong University (4): 17–20. (in Chinese). Markovits-Somogyi, R. 2011. Measuring efficiency in transport: the state of the art of applying data envelopment analysis, Transport 26(1): 11–19. https://doi.org/10.3846/16484142.2011.555500

Milenković, M.; Švadlenka, L.; Melichar, V.; Bojović, N.; Avramović, Z. 2018. SARIMA modelling approach for railway passenger flow forecasting, Transport 33(5): 1113–1120. https://doi.org/10.3846/16484142.2016.1139623

Namiot, D. E.; Pokusaev, O. N.; Lazutkina, V. S. 2018. O modeljah passazhirskogo potoka dlja gorodskih zheleznyh dorog, International Journal of Open Information Technologies 6(3): 9–14. (in Russian).

Prakaulya, V.; Sharma, R.; Singh, U.; Itare, R. 2017. Railway passenger forecasting using time series decomposition model, in 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), 20–22 April 2017, Coimbatore, India, 554–558. https://doi.org/10.1109/ICECA.2017.8212725

Rabiega, W. P.; Sikora, P. 2020. Ścieżki redukcji emisji CO2 w sektorze transportu w polsce w kontekście “Europejskiego zielonego ładu”. Centrum analiz klimatyczno-energetycznych,Warszawa, Polska. 48 s. (in Polish). Available from Internet: http://climatecake.pl/wp-content/uploads/2020/10/%C5%9Acie%C5%BCki-redukcji-emisji-CO2-w-sektorze-transportu-w-PL-w-kontek%C5%9Bcie-Europejskiego-Zielonego--%C5%81adu.pdf

Redakcja. 2020. Inwestycje są potrzebne. Polski tabor się starzeje, Raport Kolejowy, 11 stycznia 2020 (in Polish). Available from Internet: https://raportkolejowy.pl/inwestycje-sa-potrzebnepolski-tabor-sie-starzeje/

Roos, J.; Gavin, G.; Bonnevay, S. 2017. A dynamic Bayesian network approach to forecast short-term urban rail passenger flows with incomplete data, Transportation Research Procedia 26: 53–61. https://doi.org/10.1016/j.trpro.2017.07.008

UTK. 2020. Statystyka przewozów pasażerskich. Urząd Transportu Kolejowego (UTK). (in Polish). Available from Internet: https://utk.gov.pl/pl/raporty-i-analizy/analizy-i-monitoring/statystyka-przewozow-pa

Schutze, C.; Schmidt, N.; Liimatainen, H.; Siefer, T. 2020. How to achieve a continuous increase in public transport ridership? – A case study of Braunschweig and Tampere, Sustainability 12(19): 8063. https://doi.org/10.3390/su12198063

Song, H.; Schnieder, E. 2018. Modeling of railway system maintenance and availability by means of colored Petri nets, Eksploatacja i Niezawodność – Maintenance and Reliability 20(2): 236–243. https://doi.org/10.17531/ein.2018.2.08

Tang, Q.; Cheng, P.; Li, N. 2017. Short time forecasting of passenger flow in urban railway using GSO-BPNN method, Technology & Economy in Areas of Communications (1): 1–4. (in Chinese).

Zhang, J.; Chen, F.; Shen, Q. 2019. Cluster-based LSTM network for short-term passenger flow forecasting in urban rail transit, IEEE Access 7: 147653–147671. https://doi.org/10.1109/ACCESS.2019.2941987

Zhou, W.; You, X.; Fan, W. 2020. A mixed integer linear programming method for simultaneous multi-periodic train timetabling and routing on a high-speed rail network, Sustainability 12(3): 1131. https://doi.org/10.3390/su12031131