Share:


Optimizing capacity of signalized road network with reversible lanes

    Jian Wang Affiliation
    ; Wei Deng Affiliation

Abstract

This paper studies the network capacity problem on signalized road network with reversible lanes. A Mixed Network Design Problem (MDNP) is formulated to describe the problem where the upper-level problem is a mixed integer non-linear program designed to maximize the network capacity by optimizing the input parameters (e.g. the signal splits, circles, reassigned number of lanes and O–D demands), while the lower-level problem is the common Deterministic User Equilibrium (DUE) assignment problem formulated to model the drivers’ route choices. According to whether one way strategy is permitted in practice, two strategies for implementing reversible roadway are considered. In the first strategy, not all lanes are reversible and the reversible roadways always hold its ability to accommodate the two-way traffic flow. In the second strategy, one-way road is allowed, which means that all the lanes are reversible and could be assigned to one flow direction if the traffic flow in both directions is severally unsymmetrical. Genetic Algorithm (GA) is detailedly presented to solve the bi-level network capacity problem. The application of the proposed method on a numerical example denotes that Strategy 2 can make more use of the physical capacity of key links (signal controlled links), thus, the corresponding network capacity outperforms it is of Strategy 1 considerably.


First published online 14 January 2015

Keyword : network capacity, genetic algorithm, mixed network design problem, user equilibrium, signalized road network

How to Cite
Wang, J., & Deng, W. (2018). Optimizing capacity of signalized road network with reversible lanes. Transport, 33(1), 1-11. https://doi.org/10.3846/16484142.2014.994227
Published in Issue
Jan 26, 2018
Abstract Views
1309
PDF Downloads
1187
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ceylan, H.; Bell, M. G. H. 2004. Reserve capacity for a road network under optimized fixed time traffic signal control, Journal of Intelligent Transportation Systems: Technology, Planning, and Operations 8(2): 87–99. http://dx.doi.org/10.1080/15472450490437780

Chen, A.; Chootinan, P.; Wong, S. C. 2006. New reserve capacity model of signal-controlled road network, Transportation Research Record 1964: 35–41. http://dx.doi.org/10.3141/1964-05

Chen, A.; Kasikitwiwat, P. 2011. Modeling capacity flexibility of transportation networks, Transportation Research Part A: Policy and Practice 45(2): 105–117. http://dx.doi.org/10.1016/j.tra.2010.11.003

Chen, A.; Yang, H; Lo, H. K.; Tang, W. H. 2002. Capacity reliability of a road network: an assessment methodology and numerical results, Transportation Research Part B: Methodological 36(3): 225–252. http://dx.doi.org/10.1016/S0191-2615(00)00048-5

Chen, A.; Yang, H.; Lo, H. K.; Tang, W. H. 1999. A capacity related reliability for transportation networks, Journal of Advanced Transportation 33(2): 183–200. http://dx.doi.org/10.1002/atr.5670330207

Chiou, S.-W. 2008. A hybrid approach for optimal design of signalized road network, Applied Mathematical Modelling 32(2): 195–207. http://dx.doi.org/10.1016/j.apm.2006.11.007

Chiou, S.-W. 2007. Reserve capacity of signal-controlled road network, Applied Mathematics and Computation 190(2): 1602–1611. http://dx.doi.org/10.1016/j.amc.2007.02.041

Chootinan, P.; Wong, S. C.; Chen, A. 2005. A reliability-based network design problem, Journal of Advanced Transportation 39(3): 247–270. http://dx.doi.org/10.1002/atr.5670390303

Daganzo, C. F. 1983. Stochastic network equilibrium with multiple vehicle types and asymmetric, indefinite link cost Jacobians, Transportation Science 17(3): 282–300. http://dx.doi.org/10.1287/trsc.17.3.282

Ekström, J.; Engelson, L.; Rydergren, C. 2009. Heuristic algorithms for a second-best congestion pricing problem, Netnomics: Economic Research and Electronic Networking 10(1): 85–102. http://dx.doi.org/10.1007/s11066-008-9019-9

Gao, Z.; Song, Y. 2002. A reserve capacity model of optimal signal control with user-equilibrium route choice, Transportation Research Part B: Methodological 36(4): 313–323. http://dx.doi.org/10.1016/S0191-2615(01)00005-4

Ge, Y.-E.; Zhang, H. M.; Lam, W. H. K. 2003. Network reserve capacity under influence of traveler information, Journal of Transportation Engineering 129(3): 262–270. http://dx.doi.org/10.1061/(ASCE)0733-947X(2003)129:3(262)

Holland, J. H. 1992. Adaptation in Natural and Artificial Systems. A Bradford Book. 211 p.

Kasikitwiwat, P.; Chen, A. 2005. Analysis of transportation network capacity related to different system capacity concepts, Journal of the Eastern Asia Society for Transportation Studies 6: 1439–1454.

Li, H. 2009. Reliability-based Dynamic Network Design with Stochastic Networks: PhD Dissertation. Delft University of Technology, Netherlands. 197 p.

Liu, Y.; Guo, X.; Yang, H. 2009. Pareto-improving and revenue-neutral congestion pricing schemes in two-mode traffic networks, Netnomics: Economic Research and Electronic Networking 10(1): 123–140. http://dx.doi.org/10.1007/s11066-008-9018-x

Lo, H. K.; Tung, Y.-K. 2003. Network with degradable links: capacity analysis and design, Transportation Research Part B: Methodological 37(4): 345–363. http://dx.doi.org/10.1016/S0191-2615(02)00017-6

Luathep, P.; Sumalee, A.; Lam, W. H. K.; Li, Z.-C.; Lo, H. K. 2011. Global optimization method for mixed transportation network design problem: a mixed-integer linear programming approach, Transportation Research Part B: Methodological 45(5): 808–827. http://dx.doi.org/10.1016/j.trb.2011.02.002

Mathew, T. V.; Sharma, S. 2009. Capacity expansion problem for large urban transportation networks, Journal of Transportation Engineering 135(7): 406–415. http://dx.doi.org/10.1061/(ASCE)0733-947X(2009)135:7(406)

Meng, Q.; Yang, H.; Bell, M. G. H. 2001. An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem, Transportation Research Part B: Methodological 35(1): 83–105. http://dx.doi.org/10.1016/S0191-2615(00)00016-3

Miandoabchi, E.; Farahani, R. Z. 2011. Optimizing reserve capacity of urban road networks in a discrete network design problem, Advances in Engineering Software 42(12): 1041–1050. http://dx.doi.org/10.1016/j.advengsoft.2011.07.005

Sheffi, Y. 1985. Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods. Prentice Hall. 416 p.

Shor, N. Z.; Sharifov, F. A. 2006. The general reliability network design problem, Journal of Automation and Information Sciences 38(3): 34–52. http://dx.doi.org/10.1615/J%20Automat%20Inf%20Scien.v38.i3.30

Sun, Y.; Song, R.; He, S.; Chen, Q. 2009. Mixed transportation network design based on immune clone annealing algorithm, Journal of Transportation Systems Engineering and Information Technology 9(3): 103–108. http://dx.doi.org/10.1016/S1570-6672(08)60068-9

Vincent, R. A.; Mitchell, A. I.; Robertson, D. I. 1980. User Guide to TRANSYT Version 8. TRRL Report LR888, Transport and Road Research Laboratory, Crowthorne, UK. 86 p.

Wang, H.; Mao, W.; Shao, H. 2013. Stochastic congestion pricing among multiple regions: competition and cooperation, Journal of Applied Mathematics 2013: 1–11. http://dx.doi.org/10.1155/2013/696481

Wolshon, B.; Lambert, L. 2006. Reversible lane systems: synthesis of practice, Journal of Transportation Engineering 132(12): 933–944. http://dx.doi.org/10.1061/(ASCE)0733-947X(2006)132:12(933)

Wong, S. C.; Yang, H. 1997. Reserve capacity of a signalcontrolled road network, Transportation Research Part B: Methodological 31(5): 397–402. http://dx.doi.org/10.1016/S0191-2615(97)00002-7

Wu, J. J.; Sun, H. J.; Gao, Z. Y.; Zhang, H. Z. 2009. Reversible lanebased traffic network optimization with an advanced traveller information system, Engineering Optimization 41(1): 87–97. http://dx.doi.org/10.1080/03052150802368799

Yang, H.; Bell, M. G. H. 1998a. A capacity paradox in network design and how to avoid it, Transportation Research Part A: Policy and Practice 32(7): 539–545. http://dx.doi.org/10.1016/S0965-8564(98)00017-2

Yang, H.; Bell, M. G. H. 1998b. Models and algorithms for road network design: a review and some new developments, Transport Reviews 18(3): 257–278. http://dx.doi.org/10.1080/01441649808717016

Yang, H.; Bell, M. G. H.; Meng, Q. 2000. Modeling the capacity and level of service of urban transportation networks, Transportation Research Part B: Methodological 34(4): 255–275. http://dx.doi.org/10.1016/S0191-2615(99)00024-7

Yang, H.; Zhang, X. 2003. Optimal toll design in second-best link-based congestion pricing, Transportation Research Record 1857: 85–92. http://dx.doi.org/10.3141/1857-10

Yang, H.; Zhang, X. 2002. Multiclass network toll design problem with social and spatial equity constraints, Journal of Transportation Engineering 128(5): 420–428. http://dx.doi.org/10.1061/(ASCE)0733-947X(2002)128:5(420)