Performance analysis of cloud computing software services
Abstract
The paper presents the performance analysis of the developed software as a service. In OpenStack cloud infrastructure, the software services for hemodynamic flow modelling and particle technology applications have been developed by using Apache jclouds API. The performance of the hosted cloud infrastructure has been assessed testing virtual memory, CPU, disk IO, network and the developed software services. The measured performance of the virtual OpenStack resources (full XEN virtualization) has been compared with that of the virtual Eucalyptus resources (KVM paravirtualization) and the native hardware.
Article in Lithuanian.
Debesų kompiuterijos programinės įrangos paslaugų greitaveikos tyrimai
Santrauka
Straipsnyje pristatomos sukurtos debesų kompiuterijos programinės įrangos paslaugos (SaaS) ir jų greitaveikos tyrimai. „OpenStack“ debesų kompiuterijos infrastruktūroje jclouds priemonėmis buvo sukurtos hemodinaminių srautų modeliavimo ir dalelių technologijų tyrimų diskrečiųjų elementų metodu programinės įrangos paslaugos. Debesų kompiuterijos infrastruktūros efektyvumas buvo ištirtas testuojant virtualios operatyviosios atmintinės, virtualaus CPU, virtualaus standžiojo disko, virtualaus tinklo ir sukurtų programinės įrangos paslaugų greitaveiką. Atliktas kiekybinis „OpenStack“ visos XEN virtualizacijos resursų greitaveikos palyginimas su „Eucalyptus“ KVM paravirtualizacijos resursų ir grynos aparatinės įrangos greitaveika.
Reikšminiai žodžiai: debesų kompiuterija, programinės įrangos paslaugos, „OpenStack“, jclouds API, greitaveikos tyrimai.
Keyword : cloud computing, software as a service (SaaS), OpenStack, jclouds, performance analysis
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
BONNIE++. (2019). Projekto tinklalapis. Prieiga per internetą: https://www.coker.com.au/bonnie++/
Castañé, G. G., Xiong, H., Dong, D., & Morrison, J. P. (2018). An ontology for heterogeneous resources management interoperability and HPC in the cloud. Future Generation Computer Systems, 88, 373-384. https://doi.org/10.1016/j.future.2018.05.086
Chierici, A., & Veraldi, R. (2010). A quantitative comparison between XEN and KVM. Journal of Physics: Conference Series, 219(4), 42005. https://doi.org/10.1088/1742-6596/219/4/042005
Estrada, Z. J., Deng, F., Stephens, Z., Pham, C., Kalbarczyk, Z., & Iyer, R. (2015). Performance comparison and tuning of virtual machines for sequence alignment software. Scalable Computing: Practice and Experience, 16(1), 71-84. https://doi.org/10.12694/scpe.v16i1.1061
Eucalyptus. (2018). Projekto tinklalapis. Prieiga per internetą: https://www.eucalyptus.cloud/
Hale, J., Li, L., Richardson, C., & Wells, G. (2017). Containers for portable, productive and performant scientific computing. Computing in Science & Engineering, 19(6), 40-50. https://doi.org/10.1109/MCSE.2017.2421459
Iperf. (2019). Projekto tinklalapis. Prieiga per internetą: https://sourceforge.net/projects/iperf/
Jclouds. (2019). Projekto tinklalapis. Prieiga per internetą: https://jclouds.apache.org/
Kačeniauskas, A., Pacevič, R., Starikovičius, V., Maknickas, A., Staškūnienė, M., & Davidavičius G. (2017). Development of cloud services for patient-specific simulations of blood flows through aortic valves. Advances in Engineering Software, 103, 57-64. https://doi.org/10.1016/j.advengsoft.2016.01.013
LINPACK. (2019). Projekto tinklalapis. Prieiga per internetą: https://www.netlib.org/linpack/
Megahed, A., Nazeem, A., Yin, P., Tata, S., Reza, H., Nezhad, M., & Nakamura, T. (2019). Optimizing cloud solutioning design. Future Generation Computer Systems, 91, 86-95. https://doi.org/10.1016/j.future.2018.08.005
Mell, P., & Grance, T. (2011). The NIST definition of cloud computing (Special publication 800-145). National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-145
Mohammadi, M., & Bazhirov, T. (2018). Comparative benchmarking of cloud computing vendors with High Performance Linpack. In Proceedings of the 2nd International Conference on High Performance Compilation, Computing and Communications, Hong Kong, 15-17 March (pp. 1-5). New York, USA. https://doi.org/10.1145/3195612.3195613
OpenStack. (2019). Projekto tinklalapis. Prieiga per internetą: https://www.openstack.org/
Pacevič, R., & Kačeniauskas, A. (2017). The development of VisLT visualization service in Openstack cloud infrastructure. Advances in Engineering Software, 103, 46-56. https://doi.org/10.1016/j.advengsoft.2016.06.012
Reddy, R., & Lastovetsky, A. (2018). Bi-objective optimization of data-parallel applications on homogeneo multicore clustersfor performance and energy. IEEE Transactions on Computers, 67, 160-177. https://doi.org/10.1109/TC.2017.2742513
Sakellari, G., & Loukas, G. (2013). A survey of mathematical models, simulation approaches and testbeds used for research in cloud computing. Simulation Modelling Practice and Theory, 39, 92-103. https://doi.org/10.1016/j.simpat.2013.04.002
Schroeder, W., Martin, K., & Lorensen, B. (2006). The visualization toolkit: an object-oriented approach to 3D graphics (4 ed.). USA: Kitware Inc. https://doi.org/10.1016/B978-012387582-2/50003-4
STREAM. (2019). Projekto tinklalapis. Prieiga per internetą: https://openbenchmarking.org/test/pts/stream
Zhang, G., & Ravishankar, M. N. (2019). Exploring vendor capabilities in the cloud environment: A case study of Alibaba Cloud Computing. Information & Management, 56(3), 343-355. https://doi.org/10.1016/j.im.2018.07.008