Share:


Measurement of electrical conductivity and resistivity of Cu-Nb18% microcomposite conductor and its welded joint

Abstract

Systems generating strong magnetic fields are widely used in modern fundamental and applied research as well as in the most innovative industrial processes. These devices generate magnetic fields that reach 5–100 T and the conductors are subjected to a huge Lorentz force, so the conductor material must be extremely strong (UTS ≥ 700 MPa) and have a good specific electrical conductivity (IACS ≥ 60%). Since traditional conductors such as copper, aluminum, gold, and silver cannot withstand such loads, microcomposite materials have been developed that are characterized by such high strength and good specific electrical conductivity. This paper reviews the specific electrical conductivity and specific electrical resistance characteristics of conductor and factors affecting them, methods of measuring these electrical characteristics as well as properties of Cu-Nb18% microcomposite conductor. This paper also describes the methodology for measuring the specific electrical conductivity and specific electrical resistance of the Cu-Nb18% microcomposite conductor solid and with welded joint (welded by using butt welding). The comparison of application possibilities of used methodologies and obtained characteristics was carried out.


Article in Lithuanian.


Cu-Nb 18 % mikrokompozitinio laidininko ir jo virintinių jungčių elektrinio laidumo ir savitosios elektrinės varžos matavimo ypatumai


Santrauka


Šiuolaikiniuose fundamentiniuose, taikomuosiuose tyrimuose bei inovatyviausiuose industriniuose procesuose yra plačiai taikomi stiprių magnetinių laukų sistemos. Šie įrenginiai generuoja magnetinius laukus, kurie siekia 5–100 T, o laidininkai yra veikiami didžiulės Lorentzo jėgos, todėl laidininkų medžiaga turi būti itin tvirta (UTS ≥ 700 MPa) ir turėti gerą savitąjį elektrinį laidumą (IACS ≥ 60 %). Kadangi tradiciniai laidininkai tokie kaip varis, aliuminis, auksas, sidabras negali atlaikyti tokių apkrovų, buvo sukurtos mikrokompozitinės medžiagos, kurios pasižymi dideliu stipriu ir turi gerą savitąjį elektrinį laidumą. Šiame darbe apžvelgiamos laidininkų savitojo elektrinio laidumo bei savitosios elektrinės varžos charakteristikos, jiems įtaką darantys veiksniai, šių elektrinių charakteristikų matavimo metodikos, Cu-Nb 18 % mikrokompozitinio laidininko savybės. Taip pat šiame darbe yra aprašomos Cu-Nb 18 % mikrokompozitinio laidininko su virintine jungtimi (pagaminta taikant sandūrinį kontaktinį suvirinimą) ir vientiso Cu-Nb 18 % laidininko savitojo elektrinio laidumo ir savitosios elektrinės varžos matavimo metodikos, atliktas metodikų taikymo galimybių ir gautų charakteristikų palyginimas.


Reikšminiai žodžiai: elektrinis laidumas, savitoji elektrinė varža, Cu-Nb mikrokompozitiniai laidininkai, virintinės jungtys, matavimai.

Keyword : electrical conductivity, specific electrical resistance, Cu-Nb microcomposite conductors, welded joints, measurements

How to Cite
Beinoras, P., & Višniakov, N. (2024). Measurement of electrical conductivity and resistivity of Cu-Nb18% microcomposite conductor and its welded joint. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 16. https://doi.org/10.3846/mla.2024.19110
Published in Issue
Jan 17, 2024
Abstract Views
303
PDF Downloads
299
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Adesakin, G. E. (2016). Effect of linear deformation on electrical conductivity of metal. Advances in Physics Theories and Applications, 53, 10–17.

ASTM International. (2020). Standard test method for resistivity of electrical conductor materials (ASTM B193-20). https://www.astm.org/b0193-20.html

ASTM International. (1999). Standard practice for determining electrical conductivity using the electromagnetic (eddy–current) method. https://www.astm.org/e1004-99.html

Awan, T. I., Bashir, A., & Tehseen, A. (2020). Chemistry of nanomaterials: Fundamentals and applications. Elsevier. https://doi.org/10.1016/C2018-0-04648-4

Bartkevičius, S., & Novickij, J. (2009). The investigation of magnetic field distribution of dual coil pulsed magnet. Electronics and Electrical Engineering, 4(92), 23–26. https://www.eejournal.ktu.lt/index.php/elt/article/view/10219/5096

Bass, J. (2022). Conductivity, electrical. Encyclopedia of Condensed Matter Physics, 3, 251–259. https://doi.org/10.1016/B978-0-323-90800-9.00065-2

Blaschke, D. N., Miller, C., Mier, R., Osborn, C., Thomas, S. M., Tegtmeier, E. L., Winter, W. P., Carpenter, J. S., & Hunter, A. (2022). Predicting electrical conductivity in Cu/Nb composites: A combined model-experiment study. Journal of Applied Physics, 132(4), 045105. https://doi.org/10.1063/5.0096880

Bowler, N., & Huang, Y. (2005). Electrical conductivity measurement of metal plates using broadband eddy-current and four-point methods. Measurement Science and Technology, 16(11), 2193–2200. https://doi.org/10.1088/0957-0233/16/11/009

Çetinarslan, C. S. (2009). Effect of cold plastic deformation on electrical conductivity of various materials. Materials and Design, 30(3), 671–673. https://doi.org/10.1016/j.matdes.2008.05.035

Chaika, V. G., Krushnevish, S. P., Volohatyuk, B. I., & Chatajan, A. A. (2015). Machines for resistivity butt welding of bandsaws, bars, wires and rods. Automatic Welding, 12, 60–63.

Chu, J., Liu, X., Zhang, X., Zhang, J., Xiao, J., Chen, X., & Xu, J. (2023). Annealing temperature dependence of mechanical and structural properties of chromium-gold films on the silica glass substrate. Thin Solid Films, 774, 139849. https://doi.org/10.1016/j.tsf.2023.139849

Fickett, F. R. (1982). Electrical properties of materials and their measurment at low temperatures (NBS technical note 1053, pp. 43–44). U.S. Department of commerce / National Bureau of Standards. https://doi.org/10.6028/NBS.TN.1053

Filgueira, M., Holanda, J., Rosenthal, R., & Pinatti, G. (2001). Mechanical behaviour of copper 15% volume niobium microcomposite wires. Materials Research, 4(2), 127–131. https://doi.org/10.1590/S1516-14392001000200015

Yamada, T., Abe, E., Osawa, C., & Yukawa, N. (2018). Prediction on microstructure and mechanical properties of hot forged Ni-based super alloy by optimization using genetic algorithms. Procedia Manufacturing, 15, 356–363. https://doi.org/10.1016/j.promfg.2018.07.230

Kozlenkova, N., Pantsyrnyi, V., Nikulin, A., Shikov, A., & Potapenko, I. (1996). Electrical conductivity of high-strength Cu-Nb microcomposites. IEEE Transactions on Magnetics, 32(4), 2921–2924. https://doi.org/10.1109/20.511487

Lemos, G., Fredel, M. C., Pyczak, F., & Tetzlaff, U. (2022). Creep resistance improvement of a polycrystalline Ni-based superalloy via TiC particles reinforcement. Materials Science and Engineering: A, 854, 143821. https://doi.org/10.1016/j.msea.2022.143821

Li, J. C., Wang, Y., & Ba, D. C. (2012). Characterization of semiconductor surface conductivity by using microscopic four-point probe technique. Physics Procedia, 32, 347–355. https://doi.org/10.1016/j.phpro.2012.03.568

Mehvari, S., Sanchez-Vicente, Y., González, S., & Lafdi, K. (2022). Conductivity behaviour under pressure of copper micro-additive/polyurethane composites (experiment and modelling). Polymers, 14(7), 1287. https://doi.org/10.3390/polym14071287

Mikalauskas, G., Višniakov, N., Lukauskaitė, R. ir Škamat, J. (2016). Mikrokompozitinių Cu-Nb laidininkų ypatumų ir jų sujungimo analizė. Mokslas – Lietuvos ateitis, 8(6), 609–614. https://doi.org/10.3846/mla.2016.980

Mikalauskas, G. (2020). Investigation of welded joints and weldability of microcomposite copper-niobium conductors for the application in high magnetic field systems [Doctoral dissertation, Vilnius Gediminas Technical University]. VGTU Repository. http://dspace.vgtu.lt/handle/1/3838

Uvarov, N. F. (2000). Estimation of composites conductivity using a general mixing rule. Solid State Ionics, 136–137, 1267–1272. https://doi.org/10.1016/S0167-2738(00)00585-3

Pantsyrny, V., Shikov, A. K., Vorobieva, V. E., Khlebova, N., Kozlenkova, N. I., Drobishev, V. A., Potapenko, I. I., Beliakov, N. A., & Polikarpova, M. V. (2008). High strength, high conductivity microcomposite Cu-Nb wires with cross sections in the range of 0.01–100 mm2. IEEE Transactions Applied Superconductivity, 18(2), 616–619. https://doi.org/10.1109/TASC.2008.921241

Ramadan, A. A., Gould, R. D., & Ashour, A. (1994). On the Van der Pauw method of resistivity measurements. Thin Solid Films, 239(2), 272–275. https://doi.org/10.1016/0040-6090(94)90863-X

Rizzo, P. (2014). Sensing solutions for assessing and monitoring railroad tracks. In Sensor technologies for civil infrastructures (Vol. 56, pp. 497–524). Woodhead Publishing. https://doi.org/10.1533/9781782422433.2.497

Sigmascope SMP350: Operator’s manual. (2017). https://helmut-fischer.gr/files/items/55/BROC_SIGMASCOPE-SMP350_973-034_us.pdf

Stricker, S. (1968). The hall effect and its applications. Advances in Electronics and Electron Physics, 25, 97–143. https://doi.org/10.1016/S0065-2539(08)60509-0

Sundqvist, B. (2022). Resistivity saturation in crystalline metals: Semi-classical theory versus experiment. Journal of Physics and Chemistry of Solids, 165, 110686. https://doi.org/10.1016/j.jpcs.2022.110686

Technical data for Niobium. (2023). https://periodictable.com/Elements/041/data.html

United States Department of Commerce. (1914). International Annealed Copper Standard.

UNI-T. (2017). Technical specification. UT620C operating manual. https://meters.uni-trend.com/product/ut620a/

Valdes, L. B. (1954). Resistivity measurments on germanium for transistors. Proceedings of IRE (pp. 420–427). IEEE. https://doi.org/10.1109/JRPROC.1954.274680

Višniakov, N., Novickij, J., Ščekaturovienė, D., & Petrauskas, A. (2011). Quality analysis of welded and soldered joints of Cu-Nb microcomposite wires. Materials Science, 17(1), 16–19. https://doi.org/10.5755/j01.ms.17.1.242

Zhuiykov, S. (2018). Nanostructured semiconductor oxides for the next generation of electronics and functional devices. Woodhead Publishing. https://doi.org/10.1533/9781782422242.1

Zhao, L., Wang, Q., Shi, G., Yang, X., Qiao, M., Wu, J., & Zhang, Z. (2022). In-depth understanding of the relationship between dislocation substructure and tensile properties in a low-carbon microalloyed steel. Materials Science and Engineering: A, 854, 143681. https://doi.org/10.1016/j.msea.2022.143681