Share:


Research of technological possibilities of heat pumps’ application in district heating of residential buildings

Abstract

The main users of district heating (DH) systems are multi-apartment buildings – 53% of these buildings in Lithuania are supplied with heat from DH systems. Heating systems in buildings are the largest final consumer of energy, accounting for almost half of total energy consumption in many European countries. One of the measures planned for the Lithuanian energy policy in the heat sector of renewable energy sources (RES) until 2030 is the installation of heat pumps (HP) in the DH networks. The purpose of the study is to evaluate the technological possibilities of integrating HP into existing buildings to evaluate the low temperature heat supply. To evaluate the potential temperature lowering of the building heating system, a graph of the lowest possible building heating system temperatures is set, according to which the heat pump for the heating substation is selected, which would raise the temperature of the heat carrier supplied from DH networks to the required temperature for the heating and hot water systems of the building. Applying thermodynamic analysis, a mathematical model is developed that evaluates the ability of the HP to raise the temperature of the supplied heat carrier at the heat substation and determines the energy efficiency of such a solution. During the simulation, two alternatives of constant (regardless of outdoor air temperature) heat carrier temperatures supplied from DH networks were considered: 60 °C (alternative A) and 55 °C (alternative B). To adapt the most appropriate option for the integration of HP, it would be appropriate to combine both alternatives, i. y. to supply 60 °C from the DH network in the cold period of the year and 55 °C in the warm period of the year.


Article in Lithuanian.


Šilumos siurblių taikymo centralizuotai aprūpinant daugiabučius pastatus šiluma technologinių galimybių tyrimas


Santrauka


Pagrindiniai centralizuoto šilumos tiekimo (CŠT) sistemų vartotojai yra daugiabučiai pastatai – 53 procentai šių pastatų Lietuvoje aprūpinama šiluma iš CŠT sistemų. Pastatų šildymo sistemos yra didžiausias galutinis energijos vartotojas, kuris sudaro beveik pusę viso energijos suvartojimo daugelyje Europos šalių. Viena iš planuojamų Lietuvos energetinės politikos priemonių atsinaujinančių energijos išteklių (AEI) šilumos sektoriuje iki 2030 m. yra šilumos siurblių (ŠS) diegimas CŠT tinkluose. Tyrimo tikslas yra įvertinti technologines galimybes esamuose pastatuose integruoti ŠS, siekiant taikyti žemos temperatūros šilumos tiekimą. Siekiant įvertinti pastato šildymo sistemos temperatūrų žeminimo potencialą, nustatomas žemiausių galimų pastato šildymo sistemos temperatūrų grafikas, pagal kurį pastato šilumos punktui parenkamas ŠS, kuris pažemintą iš CŠT sistemų tiekiamą šilumnešio temperatūrą pakeltų iki reikiamos pastato šildymo ir karšto vandens sistemoms temperatūros. Taikant termodinaminę analizę sukurtas matematinis modelis, įvertinantis ŠS galimybes pakelti tiekiamo šilumnešio temperatūrą šilumos punkte ir nustatantis tokio sprendimo energinį efektyvumą. Modeliavimo metu nagrinėtos dvi tiekiamo iš CŠT tinklų pastovių (nepriklausomai nuo lauko oro temperatūros) šilumnešio temperatūrų alternatyvos – 60 °C (alternatyva A) ir 55 °C (alternatyva B). Siekiant pritaikyti tinkamiausią ŠS integravimo variantą, būtų tikslinga derinti abi alternatyvas, t. y. šaltuoju metų laikotarpiu iš CŠT tinklo tiekti 60 °C, o šiltuoju metų laikotarpiu – 55 °C šilumnešį.


Reikšminiai žodžiai: centralizuotas šilumos tiekimas, daugiabutis namas, šilumos siurblys, žemos temperatūros šilumos tiekimas, šilumos nuostoliai tinkle.

Keyword : district heating, apartment building, heat pump, low temperature heat supply, heat loss in the network

How to Cite
Rogoža, A., & Misevičiūtė, V. (2022). Research of technological possibilities of heat pumps’ application in district heating of residential buildings. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 14. https://doi.org/10.3846/mla.2022.17224
Published in Issue
Aug 23, 2022
Abstract Views
309
PDF Downloads
301
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abokersh, M. H., Saikia, K., Cabeza, L. F., Boer, D., & Vallès, M. (2020). Flexible heat pump integration to improve sustainable transition toward 4th generation district heating. Energy Conversion and Management, 225, 113379. https://doi.org/10.1016/j.enconman.2020.113379

Averfalk, H., & Werner, S. (2017). Essential improvements in future district heating systems. Energy Procedia, 116, 217–225. https://doi.org/10.1016/j.egypro.2017.05.069

Barco-Burgos, J., Bruno, J. C., Eicker, U., Saldaña-Robles, A. L., & Alcántar-Camarena, V. (2022). Review on the integration of high-temperature heat pumps in district heating and cooling networks. Energy, 239, 122378. https://doi.org/10.1016/j.energy.2021.122378

Buinovskis, L. ir Rogoža, A. (2022). Žemos temperatūros šilumos tiekimo taikymas integruojant šilumos siurblius pastatuose. Iš 25-osios Lietuvos jaunųjų mokslininkų konferencijos „Mokslas – Lietuvos ateitis“ (p. 15–20), Vilnius, Lietuva. https://doi.org/10.3846/pinzs.2022.03

Department of Energy & Climate Change. (2016). Heat pumps in district heating: Final report case studies. www.nationalarchives.gov.uk/doc/open-government-licence/

Fernández, M. G., Roger-Lacan, C., Gährs, U., & Aumaitre, V. (2016). Efficient district heating and cooling systems in the EU. https://doi.org/10.2760/371045

Gaur, A. S., Fitiwi, D. Z., & Curtis, J. (2021). Heat pumps and our low-carbon future: A comprehensive review. Energy Research & Social Science, 71, 101764. https://doi.org/10.1016/j.erss.2020.101764

Gedgaudas, M., Šležas, A., Švedarauskas, J. ir Tuomas, E. (1992). Šilumos tiekimas. Vilnius.

Guzzini, A., Pellegrini, M., Pelliconi, E., & Saccani, C. (2020). Low temperature district heating: An expert opinion survey. Energies, 13(4), 810. https://doi.org/10.3390/en13040810

Lauka, D., Gusca, J., & Blumberga, D. (2015). Heat pumps integration trends in district heating networks of the Baltic States. Procedia Computer Science, 52(1), 835–842. https://doi.org/10.1016/j.procs.2015.05.140

Li, H., & Wang, S. J. (2014). Challenges in smart low-temperature district heating development. Energy Procedia, 61, 1472–1475. https://doi.org/10.1016/j.egypro.2014.12.150

Lietuvos energetikos agentūra. (2019). Lietuvos Respublikos nacionalinis energetikos ir klimato srities veiksmų planas 2021-2030 m. https://www.ena.lt/uploads/Failai-NEKS-VP/NEKS-VP-2021-2030.pdf

Lund, H., Duic, N., Østergaard, P. A., & Mathiesen, B. V. (2018). Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating. Energy, 165, 614–619. https://doi.org/10.1016/j.energy.2018.09.115

Lund, H., Østergaard, P. A., Nielsen, T. B., Werner, S., Thorsen, J. E., Gudmundsson, O., Arabkoohsar, A., & Mathiesen, B. V. (2021). Perspectives on fourth and fifth generation district heating. Energy, 227, 120520. https://doi.org/10.1016/j.energy.2021.120520

Ma, Z., Knotzer, A., Billanes, J. D., & Jørgensen, B. N. (2020). A literature review of energy flexibility in district heating with a survey of the stakeholders’ participation. Renewable and Sustainable Energy Reviews, 123, 109750. https://doi.org/10.1016/j.rser.2020.109750

Marguerite, C., Geyer, R., Hangartner, D., Lindahl, M., & Pedersen, S. V. (2019). IEA Heat Pumping Technologies Annex 47. In Heat Pumps in District Heating and Cooling Systems. https://heatpumpingtechnologies.org/annex47/wp-content/uploads/sites/54/2019/03/task3-report.pdf

Nord, N., Løve Nielsen, E. K., Kauko, H., & Tereshchenko, T. (2018). Challenges and potentials for low-temperature district heating implementation in Norway. Energy, 151, 889–902. https://doi.org/10.1016/j.energy.2018.03.094

Ommen, T., Markussen, W. B., & Elmegaard, B. (2014). Heat pumps in combined heat and power systems. Energy, 76, 989–1000. https://doi.org/10.1016/j.energy.2014.09.016

Ommen, T., Markussen, W. B., & Elmegaard, B. (2016). Lowering district heating temperatures – Impact to system performance in current and future Danish energy scenarios. Energy, 94, 273–291. https://doi.org/10.1016/j.energy.2015.10.063

Østergaard, D. S., Tunzi, M., & Svendsen, S. (2021). What does a well-functioning heating system look like? Investigation of ten Danish buildings that utilize district heating efficiently. Energy, 227, 120250. https://doi.org/10.1016/j.energy.2021.120250

Rogoža, A., Šiupšinskas, G. ir Bielskus, J. (2021). Šilumos siurblio integravimo centralizuoto šilumos tiekimo sistemoje atvejo analizė. Mokslas – Lietuvos ateitis / Science – Future of Lithuania, 13, 1–6. https://doi.org/10.3846/mla.2021.15272

Schmidt, D., Kallert, A., Blesl, M., Svendsen, S., Li, H., Nord, N., & Sipilä, K. (2017). Low temperature district heating for future energy systems. Energy Procedia, 116, 26–38. https://doi.org/10.1016/j.egypro.2017.05.052

Šiupšinskas, G., Bielskus, J. ir Rogoža, A. (2021). Daugiabučio modernizavimo įtaka pastato šildymo sistemos temperatūroms. Mokslas – Lietuvos ateitis / Science – Future of Lithuania, 13, 1–6. https://doi.org/10.3846/mla.2021.15275

Zajacs, A., Bogdanovics, R., & Borodinecs, A. (2020). Analysis of low temperature lift heat pump application in a district heating system for flue gas condenser efficiency improvement. Sustainable Cities and Society, 57, 102130. https://doi.org/10.1016/j.scs.2020.102130