Share:


Investigation of the influence of mass flow rate on phase change material behaviour

Abstract

The paper presents an experimental study of the influence of heat transfer fluid (HTF) mass flow rate on phase change materials (PCM) behaviour. The experimental study was performed on a specially designed test bench. Research object – PCM based thermal energy storage unit which consists of a stainless steel tank with dual circuit tube-fin copper heat exchanger. The tank (storage volume) was filled with phase change material RT82. The experiment was carried out using three different mass flow rates of HTF: high – 0.25 kg/s, medium – 0.125 kg/s, low – 0.05 kg/s. The analysis showed that in the case of high and medium mass flow rates the melting/solidification process highly depends on the temperature of inlet HTF. Influence of mass flow rate is higher in the case of low mass flow rate.


Article in Lithuanian.


Šilumnešio debito įtakos fazinio virsmo medžiagos veikimui tyrimas


Santrauka


Straipsnyje pateikiamas šilumnešio masės debito įtakos šilumai kaupti naudojamų fazinio virsmo medžiagų (FVM) veikimui eksperimentinis tyrimas. Tyrimas buvo atliekamas specialiai pagamintame testavimo stende. Tiriamasis objektas – FVM šilumos kaupimo įrenginys, sudarytas iš nerūdijančiojo plieno talpyklos ir dviejų kontūrų varinio šilumokaičio (vamzdelių) su varinėmis plokštelėmis. Talpykla užpildyta fazinio virsmo medžiaga RT82. Tyrimas atliekamas keičiant šilumnešio masinį debitą. Pasirinktos trys vertės: didžiausia – 0,25 kg/s, vidutinė – 0,125 kg/s ir mažiausia – 0,05 kg/s. Nustatyta, kad, esant didžiausiam ir vidutiniam debitams, FVM lydymosi / kietėjimo proceso trukmei didžiausią įtaką turi tiekiamojo šilumnešio temperatūra, esant mažiausiam debitui vyksta didesnė debito įtaka proceso trukmei.


Reikšminiai žodžiai: šilumos kaupimas, fazinio virsmo medžiaga (FVM), fazinio virsmo šiluma, šilumokaitis, šilumnešio srautas, testavimo stendas.

Keyword : thermal energy storage, Phase change material (PCM), latent heat, heat transfer, heat exchanger, heat carrier flow, test bench

How to Cite
Pakalka, S., Valančius, K., & Damonskis, M. (2019). Investigation of the influence of mass flow rate on phase change material behaviour. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 11. https://doi.org/10.3846/mla.2019.10578
Published in Issue
Oct 10, 2019
Abstract Views
1312
PDF Downloads
453
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Huang, H., Wang, Z., Zhang, H., Dou, B., Huang, X., Liang, H., & Goula, M. A. (2019). An experimental investigation on thermal stratification characteristics with PCMs in solar water tank. Solar Energy, 177, 8-21. https://doi.org/10.1016/j.solener.2018.11.004

Kabbara, M., Groulx, D., & Joseph, A. (2018). A parametric experimental investigation of the heat transfer in a coil-in-tank latent heat energy storage system. International Journal of Thermal Sciences, 130, 395-405. https://doi.org/10.1016/j.ijthermalsci.2018.05.006

Khan, Z., & Khan, Z. A. (2017). Experimental investigations of charging/melting cycles of paraffin in a novel shell and tube with longitudinal fins based heat storage design solution for domestic and industrial applications. Applied Energy, 206, 1158-1168. https://doi.org/10.1016/j.apenergy.2017.10.043

Mahdi, M. S., Mahood, H. B., Khadom, A. A., Campbell, A. N., Hasan, M., & Sharif, A. O. (2019). Experimental investigation of the thermal performance of a helical coil latent heat thermal energy storage for solar energy applications. Thermal Science and Engineering Progress, 10, 287-298. https://doi.org/10.1016/j.tsep.2019.02.010

Merlin, K., Soto, J., Delaunay, D., & Traonvouez, L. (2016). Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage. Applied Energy, 183, 491-503. https://doi.org/10.1016/j.apenergy.2016.09.007

Moldgy, A., & Parameshwaran, R. (2018). Study on thermal energy storage properties of organic phase change material for waste heat recovery applications. Materials Today: Proceedings, 5(8), 16840-16848. https://doi.org/10.1016/j.matpr.2018.05.137

Nazir, H., Batool, M., Bolivar Osorio, F. J., Isaza-Ruiz, M., Xu, X., Vignarooban, K., Phelan, P., Inamuddin, & Kannan, A. M. (2019). Recent developments in phase change materials for energy storage applications: a review. International Journal of Heat and Mass Transfer, 129, 491-523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126

Pakalka, S., Valančius, K., Čiuprinskas, K., Pum, D., & Hinteregger, M. (2017, April 27-28). Analysis of possibilities to use phase change materials in heat exchangers-accumulators. In 10th International conference “Environmental Engineering” (pp. 1-8), Vilnius Gediminas Technical University, Lithuania. Vilnius: VGTU Press. https://doi.org/10.3846/enviro.2017.270

Pakalka, S., Valančius, K., Streckienė, G. ir Ulbikaitė, V. (2018). Fazinio virsmo medžiagos charakteristikų šilumos kaupiklyje skaitinis modeliavimas. Mokslas – Lietuvos ateitis: Aplinkos inžinerija – 2018 [Science – future of Lithuania: Environmental engineering – 2018], 10, 1-7. https://doi.org/10.3846/mla.2018.3225

Zauner, C., Hengstberger, F., Mörzinger, B., Hofmann, R., & Walter, H. (2017). Experimental characterization and simulation of a hybrid sensible-latent heat storage. Applied Energy, 189, 506-519. https://doi.org/10.1016/j.apenergy.2016.12.079

Zondag, H. A., de Boer, R., Smeding, S. F., & van der Kamp, J. (2017). Development of industrial PCM heat storage lab prototype. Energy Procedia, 135, 115-125. https://doi.org/10.1016/j.egypro.2017.09.495

Zondag, H. A., de Boer, R., Smeding, S. F., & van der Kamp, J. (2018). Performance analysis of industrial PCM heat storage lab prototype. Journal of Energy Storage, 18, 402-413. https://doi.org/10.1016/j.est.2018.05.007