Utilization of recycled carbide as adsorbent for adsorption of dyes and COD from textile waste
Abstract
This study assessed the potential of carbide waste (CW), a by-product of the welding industry, as a cost-effective adsorbent for removing dyes and COD from textile wastewater. CW was prepared through drying, filtering, and shaping into 2 mm-thick tablets (3 mm diameter), followed by heating at 150 °C for 120 minutes. Characterization using FTIR and SEM-EDX confirmed functional groups like hydroxyl and carbonyl and significant surface morphological changes. Batch experiments achieved maximum color and COD removal efficiencies of 94.48% and 96.73%, respectively, at 75 g adsorbent dosage and 150 min contact time. Freundlich isotherm (R² = 0.9918 for color) indicated heterogeneous adsorption, and kinetic studies fit a pseudo-second-order model. The process was exothermic, spontaneous, and governed by physical adsorption. Regeneration trials showed COD removal efficiency remained 90% after four cycles. These findings establish CW as an efficient, sustainable adsorbent with promising environmental and industrial applications for textile wastewater treatment.
Keyword : textile wastewater, CW adsorbent, adsorption, color removal, COD reduction

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Ahmad, A. A., & Hamid, B. H. (2009). Reduction of COD and color from dye wastewater of a cotton textile mill through adsorption onto bamboo-based activated carbon. Journal of Hazardous Materials, 172(2–3), 1538–1543. https://doi.org/10.1016/j.jhazmat.2009.08.025
Aichour, A., Djafer Khodja, H., & Zaghouane-Boudiaf, H. (2021). Removal of textile dyes from wastewater using promising novel composites: A review. Algerian Journal of Chemical Engineering, 2, 49–65.
Almeida, C. A. P., Debacher, N. A., Downs, A. J., Cottet, L., & Mello, C. A. D. (2009). Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. Journal of Colloid and Interface Science, 332(1), 46–53. https://doi.org/10.1016/j.jcis.2008.12.012
Al-Musawi, T. J., Rajiv, P., Mengelizadeh, N., Mohammed, I. A., & Balarak, D. (2021). Development of sonophotocatalytic process for degradation of acid orange 7 dye by using titanium dioxide nanoparticles/graphene oxide nanocomposite as a catalyst. Journal of Environmental Management, 292, Article 112777. https://doi.org/10.1016/j.jenvman.2021.112777
American Public Health Association. (2017). Standard methods for the examination of water and wastewater (23rd ed.). American Public Health Association, American Water Works Association, and Water Environment Federation.
Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2015). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2015, Article 412797.
Babara, S., Gavade, N., Shinde, H., Gore, A. H., Mahajan, P., Lee, K. H., & Bhuse, V. (2019). An innovative transformation of waste toner powder into magnetic g-C₃N₄-Fe₂O₃ photocatalyst: Sustainable e-waste management. Journal of Environmental Chemical Engineering, 7, Article 103041. https://doi.org/10.1016/j.jece.2019.103041
Balarak, D., Abasizadeh, H., Yang, J.-K., Shim, M. J., & Lee, S.-M. (2020a). Biosorption of Acid Orange 7 (AO7) dye by canola waste: Equilibrium, kinetic, and thermodynamic studies. Desalination and Water Treatment, 190, 331–339. https://doi.org/10.5004/dwt.2020.25665
Balarak, D., Al-Musawi, T. J., Mohammed, I. A., & Abasizadeh, H. (2020b). The eradication of reactive black 5 dye liquid wastes using Azolla filiculoides aquatic fern as a good and economical biosorption agent. SN Applied Sciences, 2, Article 1015. https://doi.org/10.1007/s42452-020-2841-x
Balarak, D., Ganji, F., Choi, S. S., Lee, S. M., & Shim, M. J. (2019). Effects of operational parameters on the removal of Acid Blue 25 dye from aqueous solutions by electrocoagulation. Applied Chemistry and Engineering, 30(6), 742–748. https://doi.org/10.14478/ace.2019.1092
Balarak, D., Zafariyan, M., Igwegbe, C. A., Onyechi, K. K., & Ig¬halo, J. O. (2021). Adsorption of Acid Blue 92 dye from aqueous solutions by single-walled carbon nanotubes: Isothermal, kinetic, and thermodynamic studies. Environmental Processes, 8(3), 869–888. https://doi.org/10.1007/s40710-021-00505-3
Biver, C. (2021). Antimony in textile processing: Environmental concerns and sustainable approaches. Journal of Hazardous Materials, 415, Article 125589.
Boparai, H. K., Joseph, M., & O’Carroll, D. M. (2011). Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials, 186(1), 458–465. https://doi.org/10.1016/j.jhazmat.2010.11.029
Bote, P. P., Vaze, S. R., Patil, C. S., Patil, S. A., Kolekar, G. B., Kurkuri, M. D., & Gore, A. H. (2021). Reutilization of carbon from exhausted water filter cartridges (EWFC) for decontamination of water: An innovative waste management approach. Environmental Technology & Innovation, 24, Article 102047. https://doi.org/10.1016/j.eti.2021.102047
Chen, G., Lei, L., Hu, X., & Yue, P. L. (2003). Kinetic study on wet air oxidation of printing and dyeing wastewater. Separation and Purification Technology, 31, 71–76. https://doi.org/10.1016/S1383-5866(02)00155-7
Cochrane, E. L., Lu, S., Gibb, S. W., & Villaescusa, I. (2006). A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media. Journal of Hazardous Materials, B137, 198–206. https://doi.org/10.1016/j.jhazmat.2006.01.054
Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9), 1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001
Dąbrowski, A. (2001). Adsorption – from theory to practice. Advances in Colloid and Interface Science, 93(1–3), 135–224. https://doi.org/10.1016/S0001-8686(00)00082-8
de Almeida, C. A., Silva, A. C., dos Santos, C. A., & de Souza, S. M. A. G. U. (2021). Optimization of Fenton and UV/H₂O₂ processes for the treatment of textile wastewater: Evaluation of toxicity and biodegradability. Journal of Environmental Chemical Engineering, 9(1), Article 104576.
Devre, P. V., Patil, A. S., & Gore, A. H. (2023). Upcycling of spent granular carbon into a sustainable and recyclable biopolymeric hybrid hydrogel for highly efficient adsorptive removal of tetracycline pollutants from environmental waters and industrial effluents. Journal of Environmental Chemical Engineering, 11(2), Article 109368. https://doi.org/10.1016/j.jece.2023.109368
Dhas, J. P. A. (2006). Removal of color and COD from textile wastewater using limestone and activated carbon [Master’s thesis]. University of Science Malaysia, Malaysia.
Dubinin, M. M., & Radushkevich, L. V. (1947). The equation of the characteristic curve of activated charcoal. Proceedings of the Academy of Sciences USSR Physical Chemistry Section, 55, 331–337.
El Haddad, M., Mamouni, R., Saffaj, N., & Lazar, S. (2012). Removal of cationic dye – Basic Red 12 – from aqueous solutions by adsorption onto animal bone meal. Journal of the Arab University Association for Basic and Applied Sciences, 12(1), 48–54. https://doi.org/10.1016/j.jaubas.2012.04.003
El Maguana, Y., Elhadiri, N., Bouchdoug, M., Benchanaa, M., & Jaouad, A. (2019). Activated carbon from prickly pear seed cake: Optimization of preparation conditions using experimental design and its application in dye removal. International Journal of Chemical Engineering, 2019, Article 8621951. https://doi.org/10.1155/2019/8621951
Farhadi, A., Ameri, A., & Tamjidi, S. (2021). Application of agricultural waste as a low-cost adsorbent for removing heavy metals and dyes from wastewater: A review study. Physical Chemistry Research, 9(2), 211–226. https://doi.org/10.22036/pcr.2021.256683.1852
Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. https://doi.org/10.1016/j.cej.2009.09.013
Forgacs, E., Cserhati, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: A review. Environment International, 30(7), 953–971. https://doi.org/10.1016/j.envint.2004.02.001
Freundlich, H. (1906). Over the adsorption in solution. The Journal of Physical Chemistry A, 57(385471), 1100–1107.
Gao, Y., Wang, Q. Y., Yue, J. C., & Wei, Q. (2007). Removal of color from simulated dye water and actual textile wastewater using composite coagulants made from poly ferric chloride and polydimethyldiallylammonium chloride. Separation and Purification Technology, 54, 157–163. https://doi.org/10.1016/j.seppur.2006.08.026
Garba, Z. N., & Rahim, A. A. (2016). Efficient utilisation of durian seed biomass as an adsorbent for methylene blue: Isotherm, kinetics, and thermodynamic studies. Journal of Environmental Chemical Engineering, 4(4), 4461–4471.
Georgiou, D., Hatiras, J., & Aivasidis, A. (2005). Microbial immobilization in a two-stage fixed-bed pilot plant reactor for on-site anaerobic decolorization of textile wastewater. Enzyme and Microbial Technology, 37, 597–605. https://doi.org/10.1016/j.enzmictec.2005.03.019
Gunay, A., Arslankaya, E., & Tosun, I. (2007). Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. Journal of Hazardous Materials, 146(1–2), 362–371. https://doi.org/10.1016/j.jhazmat.2006.12.038
Gupta, K., Singh, R., & Pandey, P. (2011). Adsorption behavior of methylene blue on nano-cupric oxide: Effect of temperature and pH. Journal of Hazardous Materials, 186(1), 891–901. Gupta, N., Kushwaha, A. K., & Chattopadhyaya, M. C. (2012). Adsorptive removal of Pb²⁺, Co²⁺, and Ni²⁺ by hydroxyapatite/chitosan composite from aqueous solution. Journal of Environmental Chemical Engineering, 43, 125–131.
Gupta, V. K., Suhas, A. I. M., & Saini, V. K. (2009). Removal of Rhodamine B, fast green, and methylene blue from wastewater using red mud, an aluminum industry waste. Industrial & Engineering Chemistry Research, 48(5), 2501–2509.
Ho, Y. S. (2014). Comments on “Modeling the adsorption of chromium(VI) on guava leaves using response surface methodology” by Sharma and Kaur. Environmental Science and Pollution Research, 21(13), 8251–8253.
Hui, Q., Lu, L.V., Pan, B.-C., Zhang, Q. J., Zhang, W.-M., & Zhang, Q.-X. (2009). Critical review of adsorption kinetic models. Journal of Zhejiang University Science A, 10, 716–724. https://doi.org/10.1631/jzus.A0820524
Jiang, L., Zhang, W.-Z., Xu, Z.-F., Huang, H.-F., Ye, X.-X., Leng, B., Yan, L., Li, Z.-J., & Zhou, X.-T. (2016). M2C and M6C carbide precipitation in Ni-Mo-Cr based superalloys containing silicon. Materials & Design, 112, 300–308. https://doi.org/10.1016/j.matdes.2016.09.075
Kadirvelu, K., Kavipriya, M., Karthika, C., Radhika, M., Vennilamani, N., & Pattabhi, S. (2003). Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresource Technology, 87(1), 129–132. https://doi.org/10.1016/S0960-8524(02)00201-8
Kalavathy, H. K., Regupathi, I., Pillai, M. G., & Miranda, L. R. (2009). Analysis and optimization of process parameters for activated carbon production from rubber wood sawdust using H₃PO₄. Colloids and Surfaces B: Biointerfaces, 70(1), 35–45. https://doi.org/10.1016/j.colsurfb.2008.12.007
Karim, M. A., Nasir, S., Widowati, T. W., & Hasanudin, U. (2023). Kinetic study of adsorption of metal ions (iron and manganese) in groundwater using calcium carbide waste. Journal of Ecological Engineering, 24(5), 155–165. https://doi.org/10.12911/22998993/161671
Khatibi, A. D., Yilmaz, M., Mahvi, A. H., & Balarak, D. (2022). Evaluation of surfactant-modified bentonite for Acid Red 88 dye adsorption in batch mode: Kinetic, equilibrium, and thermodynamic studies. Desalination and Water Treatment, 271, 48–57. https://doi.org/10.5004/dwt.2022.28812
Kilic, M., Apaydin-Varol, E., & Pütün, A. E. (2011). Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics, and thermodynamics. Journal of Hazardous Materials, 189(1–2), 397–403. https://doi.org/10.1016/j.jhazmat.2011.02.051
Kose, T. E., & Kivanc, M. (2011). Adsorption of heavy metals from aqueous solutions using a novel agricultural waste material: Eggshell. Journal of Environmental Sciences, 23(9), 1548–1554.
Kumar, K. V., Porkodi, K., & Rocha, F. (2010a). Isotherm and kinetic studies of methylene blue adsorption onto activated carbon prepared from wood waste. Desalination, 265(1–3), 147–156.
Kumar, P. S., Ramalingam, S., Senthamarai, C., Niranjanaa, M., Vijayalakshmi, P., & Sivanesan, S. (2010b). Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination, 261(1–2), 52–60. https://doi.org/10.1016/j.desal.2010.05.032
Lambert, S. J., & Davy, A. J. (2011). Water quality as a threat to aquatic plants: Discriminating the effects of nitrate, phosphate, boron, and heavy metals on charophytes. New Phytologist, 189(4), 1051–1059. https://doi.org/10.1111/j.1469-8137.2010.03543.x
Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica, and platinum. Journal of the American Chemical Society, 40(9), 1361–1403. https://doi.org/10.1021/ja02242a004
Liakos, T. I., Sotiropoulos, S., & Lazaridis, N. K. (2017). Electrochemical and bioelectrochemical treatment of yeast wastewater. Journal of Environmental Chemical Engineering, 5, 699–708. https://doi.org/10.1016/j.jece.2016.12.048
Maldonado, M., Malato, S., & Perez-Estrada, L. (2006). Partial degradation of five pesticides and industrial pollutants by ozonation in a pilot-plant scale reactor. Journal of Hazardous Materials, 138(2), 363–369. https://doi.org/10.1016/j.jhazmat.2006.05.058
McKay, G., Blair, H. S., & Gardner, J. R. (1980). Adsorption of dyes on chitin. I. Equilibrium studies. Journal of Applied Polymer Science, 25(3), 581–591.
Miler, M., Kočí, V., & Dvořák, L. (2016). Modeling of adsorption processes in water treatment: Equilibrium, kinetics and mass transfer. Chemical Engineering Transactions, 47, 397–402.
Momina, B., Khan, S. J., & Shabana. (2020). Regeneration performance of bentonite clay in adsorption of dyes: Evaluation over multiple cycles. Environmental Technology & Innovation, 18, Article 100774.
Mostafapour, F. K., Yilmaz, M., Mahvi, A. H., Younesi, A., Ganji, F., & Balarak, D. (2022). Adsorptive removal of tetracycline from aqueous solution by surfactant-modified zeolite: Equilibrium, kinetics, and thermodynamics. Desalination and Water Treatment, 247, 216–228. https://doi.org/10.5004/dwt.2022.27943
Patil, C. S., Gunjal, D. B., Naik, V. M., Harale, N. S., Jagadale, S. D., & Gore, A. H. (2019). Waste tea residue as a low-cost adsorbent for removal of hydralazine hydrochloride pharmaceutical pollutant from aqueous media: An environmental remediation. Journal of Cleaner Production, 206, 407–418. https://doi.org/10.1016/j.jclepro.2018.09.140
Patil, C. S., Kadam, A. N., Gunjal, D. B., Naik, V. M., Lee, S.-W., Kolekar, G. B., & Gore, A. H. (2020). Sugarcane molasses derived carbon sheet@sea sand composite for direct removal of methylene blue from textile wastewater: Industrial wastewater remediation through sustainable, greener, and scalable methodology. Separation and Purification Technology, 247, Article 116997. https://doi.org/10.1016/j.seppur.2020.116997
Pirkarami, A., & Olya, M. E. (2017). Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism. Journal of Saudi Chemical Society, 21, S179–S186. https://doi.org/10.1016/j.jscs.2013.12.008
Raji, M., Mirbagheri, S. A., Ye, F., & Dutta, J. (2021). Nano zero-valent iron on activated carbon cloth support as Fenton-like catalyst for efficient color and COD removal from melanoidin wastewater. Chemosphere, 263, Article 127945. https://doi.org/10.1016/j.chemosphere.2020.127945
Rauf, M. A., & Ashraf, S. S. (2012). Survey of recent trends in biochemically assisted degradation of dyes. Journal of Chemical Engineering, 209, 520–530. https://doi.org/10.1016/j.cej.2012.08.015
Senthilkumaar, S., Varadarajan, P. R., Porkodi, K., & Subb¬huraam, C. V. (2006). Adsorption of methylene blue onto jute fiber carbon: Kinetics and equilibrium studies. Journal of Colloid and Interface Science, 284(1), 78–82. https://doi.org/10.1016/j.jcis.2004.09.027
Shinde, S. B., Dhengale, S. D., Nille, O. S., Jadhav, S. S., Gore, A. H., Bhosale, T. R., Birajdar, N. B., Kolekar, S. S., Kolekar, G. B., & Anbhule, P. V. (2023). Template-free synthesis of mesoporous carbon from firecracker waste and designing of ZnO-Mesoporous carbon photocatalyst for dye (MO) degradation. Inorganic Chemistry Communications, 147, Article 110242. https://doi.org/10.1016/j.inoche.2022.110242
Taty-Costodes, V. C., Fauduet, H., Porte, C., & Delacroix, A. (2003). Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. Journal of Hazardous Materials, 105(1–3), 121–142. https://doi.org/10.1016/j.jhazmat.2003.07.009
Toth, J. (2002). Adsorption: Theory, modeling, and analysis. Marcel Dekker, Inc.
Vimala, R., & Das, N. (2009). Biosorption of cadmium (II) and lead (II) from aqueous solutions using fungi: A comparative study. Journal of Hazardous Materials, 168(1), 376–382. https://doi.org/10.1016/j.jhazmat.2009.02.062
Vunain, E., Mishra, A. K., & Krause, R. W. (2013). Fabrication, characterization, and application of polymer nanocomposites for arsenic(III) removal from water. Journal of Inorganic and Organometallic Polymers and Materials, 23(2), 293–305. https://doi.org/10.1007/s10904-012-9775-8
Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31–59. https://doi.org/10.1061/JSEDAI.0000430
Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172–184. https://doi.org/10.1016/j.cis.2014.04.002
Zhang, X., Wang, Y., Wang, J., Zhang, Y., & Zhang, D. (2019). Temperature effects on adsorption of pollutants from wastewater: A review. Chemical Engineering Journal, 374, 1454–1464.
Zhou, Y., Lu, J., Zhou, Y., & Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: A review. Environmental Pollution, 252, 352–365. https://doi.org/10.1016/j.envpol.2019.05.072