Share:


Combined action of adsorption and catalytic oxidation in aluminum dye removal by groundwater treatment waste

    Edita Sodaitienė Affiliation
    ; Danutė Kaušpėdienė Affiliation
    ; Audronė Gefenienė Affiliation
    ; Romas Ragauskas Affiliation
    ; Rimantas Ramanauskas Affiliation

Abstract

The performance of groundwater treatment waste (GWTW) as an adsorbent and catalyst in the decoloration of aluminum dye Sanodure green LWN (SG) solution was investigated. The raw GWTW was more suitable for dye removal than calcined at 800 °C temperature. The catalytic activity of GWTW in Fenton-like reactions in sunlight increases with decreasing pH from 5.5 to 2.5 and increasing temperature from 20 to 60 °C. The rate of 70% decoloration in the first 5 min and 92% after 50 min of 100 mg/L SG dye solution was reached at 50 °C and pH 3. Kinetics of the SG dye color removal fitted well with the double exponential and two-stage pseudo-first-order kinetic models. The activation energy of the first stage of the SG dye degradation reaction is 30.45 kJ/mol. GWTW could be re-used for the pre-treatment of dye-contaminated wastewater before entering the wastewater treatment plant.

Keyword : waste management technologies, groundwater treatment waste, adsorption, heterogeneous catalysis, dye removal

How to Cite
Sodaitienė, E., Kaušpėdienė, D., Gefenienė, A., Ragauskas, R., & Ramanauskas, R. (2022). Combined action of adsorption and catalytic oxidation in aluminum dye removal by groundwater treatment waste. Journal of Environmental Engineering and Landscape Management, 30(1), 66-80. https://doi.org/10.3846/jeelm.2022.16286
Published in Issue
Jan 27, 2022
Abstract Views
579
PDF Downloads
568
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Albrektienė, R., Karaliūnas, K., & Bazienė, K. (2019). Sustainable reuse of groundwater treatment iron sludge for organic matter removal from river Neris water. Sustainability, 11(3), 639–654. https://doi.org/10.3390/su11030639

Ali, M. E. M., Gad-Allah, T. A., & Badawy, M. I. (2013). Heterogeneous Fenton process using steel industry wastes for methyl orange degradation. Applied Water Science, 3, 263–270. https://doi.org/10.1007/s13201-013-0078-1

Aragaw, T. A., Bogale, F. M., & Aragaw, B. A. (2021). Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms. Journal of Saudi Chemical Society, 25(8), 101280. https://doi.org/10.1016/j.jscs.2021.101280

Arora, C., Kumar, P., Soni, S., Mittal, J., Mittal, A., & Singh, B. (2020). Efficient removal of malachite green dye from aqueous solution using Curcuma caesia based activated carbon. Desalination and Water Treatment Science and Engineering, 195, 341–352. https://doi.org/10.5004/dwt.2020.25897

Azha, S. F., Shahadat, M., Ismail, S., Ali, S. W., & Ahammad, S. Z. (2021). Prospect of clay-based flexible adsorbent coatings as cleaner production technique in wastewater treatment, challenges, and issues: A review. Journal of the Taiwan Institute of Chemical Engineers, 120, 178–206. https://doi.org/10.1016/j.jtice.2021.03.018

Babatunde, A. O., & Zhao, Y. O. (2007). Constructive approaches toward water treatment works sludge management: An international review of beneficial reuses. Critical Reviews in Environmental Science and Technology, 37(2), 129–164. https://doi.org/10.1080/10643380600776239

Banazadeh, A., Salimi, H., Khaleghi, M., & Shafiei-Haghighi, S. (2016). Highly efficient degradation of hazardous dyes in aqueous phase by supported palladium nanocatalyst–a green approach. Journal of Environmental Chemical Engineering, 4(2), 2178–2182. https://doi.org/10.1016/j.jece.2015.09.007

Bartošová, A., Blinová, L., Sirotiak, M., & Michalíková, A. (2017). Usage of FTIR-ATR as non-destructive analysis of selected toxic dyes. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 25(40), 103–111. https://doi.org/10.1515/rput-2017-0012

Bello, M. M., & Raman, A. A. A. (2019). Synergy of adsorption and advanced oxidation processes in recalcitrant wastewater treatment. Environmental Chemistry Letters, 17, 1125–1142. https://doi.org/10.1007/s10311-018-00842-0

Benetoli, L. O. de B., Cadorin, B. M., Postiglione, C. da S., de Souza, I. G., & Debacher, N. A. (2011). Effect of temperature on methylene blue decolorization in aqueous medium in electrical discharge plasma reactor. Journal of Brazilian Chemical Society, 22(9), 1669–1678. https://doi.org/10.1590/S0103-50532011000900008

Bhat, A. P., & Gogate, P. R. (2021). Degradation of nitrogen-containing hazardous compounds using advanced oxidation processes: A review on aliphatic and aromatic amines, dyes, and pesticides. Journal of Hazardous Materials, 403, 123657. https://doi.org/10.1016/j.jhazmat.2020.123657

Bokare, A. D., & Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121–135. https://doi.org/10.1016/j.jhazmat.2014.04.054

Chang, Ch.-Ch., Chiang, F.-Ch., Chen, Sh.-M., Thangavelu, K., & Yang, H.-J. (2016). Studies on electrochemical oxidation of aluminum and dyeing in various additives towards industrial applications. International Journal of Electrochemical Science, 11, 2142–2150.

Clariant. (2014). Aluminum finishing. Specific color solutions. Clariant International Ltd.

Clariant. (2020). Sanodure Green LWN safety data sheet. https://www.clariant.com/en/Solutions/Products/2014/03/18/17/07/Sanodure-Green-LWN

Collivignarelli, M. C., Abb, A., Miino, M. C., & Damiani, S. (2019). Treatments for color removal from wastewater: State of the art. Journal of Environmental Management, 236, 727–745. https://doi.org/10.1016/j.jenvman.2018.11.094

Deka, P., Hazarika, A., Deka, R. C., & Bharali, P. (2016). Influence of CuO morphology on the enhanced catalytic degradation on methylene blue and methyl orange. RSC Advances, 6, 95292–95305. https://doi.org/10.1039/C6RA20173C

Diliūnas, J., Jurevičius, A., & Zuzevičius, A. (2006). Formation of iron compounds in the Quaternary groundwater of Lithuania. Geologija, 55, 66–73.

Domacena, A. M. G., Aquino, C. L. E., & Balela, M. D. L. (2020). Photo-Fenton degradation of methyl orange using hematite (α-Fe2O3) of various morphologies. Materials Today: Proceedings, 22, 248–254. https://doi.org/10.1016/j.matpr.2019.08.095

Dzombak, D. A., & Morel, F. M. M. (1990). Surface complexation modeling: Hydrous Ferric Oxide. John Wiley & Sons.

Garrido-Ramírez, E. G., Theng, B. K. G., & Mora, M. L. (2010). Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions – A review. Applied Clay Science, 47(3–4), 182–192. https://doi.org/10.1016/j.clay.2009.11.044

Grosvenor, A. P., Kobe, B. A., Biesinger, M. C., & McIntyre, N. S. (2004). Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis, 36(12), 1564–1574. https://doi.org/10.1002/sia.1984

Gupta, V. K., Agarwal, S., Ahmad, R., Mirza, A., & Mittal, J. (2020). Sequestration of toxic congo red dye from aqueous solution using ecofriendly guar gum/activated carbon nanocomposite. International Journal of Biological Macromolecules, 158, 1310–1318. https://doi.org/10.1016/j.ijbiomac.2020.05.025

Guz, L., Curutchet, G., Torres Sánchez, R. M., & Candal, R. (2014). Adsorption of crystal violet on montmorillonite (or iron modified montmorillonite) followed by degradation through Fenton or photo-Fenton type reactions. Journal of Environmental Chemical Engineering, 2(4), 2344–2351. https://doi.org/10.1016/j.jece.2014.02.007

Haddad, B., Mittal, A., Mittal, J., Paolone, A., Villemin, D., Debdab, M., Mimanne, G., Habibi, A., Hamidi, Z., Boumediene, M., & Belarbi, E.-h. (2021). Synthesis and characterization of Egg shell (ES) and Egg shell with membrane (ESM) modified by ionic liquids. Chemical Data Collections, 33, 100717. https://doi.org/10.1016/j.cdc.2021.100717

Heber, T. (2015). Weather fast adsorptive dyeing of anodized aluminum for outdoor applications [Conference presentation]. 2015 Anodizing Conference, San Diego, California.

Horáková, M., Klementová, Š., Kříž, P., Balakrishna, S. K., Špatenka, P., Golovko, O., Hájková, P., & Exnar, P. (2014). The synergistic effect of advanced oxidation processes to eliminate resistant chemical compounds. Surface and Coatings Technology, 241, 154–158. https://doi.org/10.1016/j.surfcoat.2013.10.068

Hou, P., Shi, C., Wu, L., & Hou, X. (2016). Chitosan/hydroxyapatite/Fe3O4 magnetic composite for metal-complex dye AY220 removal: Recyclable metal-promoted Fenton-like degradation. Microchemical Journal, 128, 218–225. https://doi.org/10.1016/j.microc.2016.04.022

Huang, M., Zhao, K., Zhang, M., Chen, Sh., Xu, W., Ye, Y., Fu, W., Wei, Y., Qiu, Z., & Sun, F. (2011). Removal of disperse dyes from wastewater by nano-iron modified goldmine waste-solid assisted AOPs. Procedia Engineering, 18, 358–362. https://doi.org/10.1016/j.proeng.2011.11.057

Jabeen, A., & Bhatti, H. N. (2021). Adsorptive removal of reactive green 5 (RG-5) and direct yellow 50 (DY-50) from simulated wastewater by Mangifera indica seed shell and its magnetic composite: Batch and Column study. Environmental Technology & Innovation, 23, 101685. https://doi.org/10.1016/j.eti.2021.101685

Kan, T., Strezov, V., Evans, T., & Nelson, P. (2016). Analysis of water produced during thermal decomposition of goethitic iron ore. International Journal of Chemical Engineering and Applications, 7(5), 327–330. https://doi.org/10.18178/ijcea.2016.7.5.599

Katsoukis, G., Jun Jo, W., & Frei, H. (2019). Structure and orientation of molecular wires embedded in ultrathin silica membrane for artificial photosynthesis elucidated by polarized FT-IRRAS. Journal of Physical Chemistry C, 123(31), 18905–18913. https://doi.org/10.1021/acs.jpcc.9b02523

Kausar, A., Naeem, K., Iqbal, M., Nazli, Z.-H., Bhatti, H. N., Ashraf, A., Nazir, A., Kusuma, H. S., & Khan, M. I. (2021). Kinetics, equilibrium and thermodynamics of dyes adsorption onto modified chitosan: A review. Zeitschrift für Physikalische Chemie. https://doi.org/10.1515/zpc-2019-1586

Lai, C., Shi, X., Li, L., Cheng, M., Liu, X., Liu, S., Li, B., Yi, H., Qin, L., Zhang, M., & An, N. (2021). Enhancing iron redox cycling for promoting heterogeneous Fenton performance: A review. Science of the Total Environment, 775, 145850. https://doi.org/10.1016/j.scitotenv.2021.145850

Leiviskä, T., Leskelä, T., & Tanskanen, J. (2019). Effect of alkali regeneration on pore characteristics and performance of ferric oxyhydroxide and akaganéite sorbents. Journal of Water Process Engineering, 31, 100838. https://doi.org/10.1016/j.jwpe.2019.100838

Li, X., Xiao, B., Wu, M., Wang, L., Chen, R., Wei, Y., & Liu, H. (2020). In-situ generation of multi-homogeneous/heterogeneous Fe-based Fenton catalysts toward rapid degradation of organic pollutants at near neutral pH. Chemosphere, 245, 125663. https://doi.org/10.1016/j.chemosphere.2019.125663

Li, Y., & Zhang, F.-S. (2010) Catalytic oxidation of Methyl Orange by an amorphous FeOOH catalyst developed from a high iron-containing fly ash. Chemical Engineering Journal, 158(2), 148–153. https://doi.org/10.1016/j.cej.2009.12.021

Lin, S.-S., & Gurol, M. D. (1998). Catalytic decomposition of hydrogen peroxide on iron oxide: Kinetics, mechanism, and implications. Environmental Science and Technology, 32(10), 1417–1423. https://doi.org/10.1021/es970648k

Luo, H., Zeng, Y., He, D., & Pan, X. (2021). Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review. Chemical Engineering Journal, 407, 127191. https://doi.org/10.1016/j.cej.2020.127191

Mariyam, A., Mittal, J., Sakina, F., Baker, R. T., & Sharma, A. K. (2021a). Adsorption behaviour of Chrysoidine R dye on a metal/halide-free variant of ordered mesoporous carbon. Desalination and Water Treatment Science and Engineering, 223, 425–433. https://doi.org/10.5004/dwt.2021.27147

Mariyam, A., Mittal, J., Sakina, F., Baker, R. T., Sharma, A. K., & Mittal, A. (2021b). Efficient batch and Fixed-Bed sequestration of a basic dye using a novel variant of ordered mesoporous carbon as adsorbent. Arabian Journal of Chemistry, 14(6), 103186. https://doi.org/10.1016/j.arabjc.2021.103186

McIntyre, N. S., & Zetaruk, G. (1977). X-ray photoelectron spectroscopic studies of iron oxides. Analytical Chemistry, 49(11), 1521–1529. https://doi.org/10.1021/ac50019a016

Miao, X., Dai, H., Chen, J., & Zhu, J. (2018). The enhanced method of hydroxyl radical generation in the heterogeneous UV-Fenton system with α-FeOOH as catalyst. Separation and Purification Technology, 200, 36–43. https://doi.org/10.1016/j.seppur.2018.02.012

Mittal, A., & Mittal, J. (2015). Hen feather: A remarkable adsorbent for dye removal. In S. K. Sharma (Ed.), Green chemistry for dyes removal from wastewater: Research trends and applications (pp. 409–457). Scrivener Publishing LLC. https://doi.org/10.1002/9781118721001.ch11

Mittal, J. (2020). Permissible synthetic food dyes in India. Resonance, 25, 567–577. https://doi.org/10.1007/s12045-020-0970-6

Montoya-Bautista, C. V., Avella, E., Ramírez-Zamora, R.-M., & Schouwenaars, R. (2019). Metallurgical wastes employed as catalysts and photocatalysts for water treatment: A review. Sustainability, 11(9), 2470–2486. https://doi.org/10.3390/su11092470

Moradi, M., Elahinia, A., Vasseghian, Y., Dragoi, E.-N., Omidi, F., & Khaneghah, A. M. (2020). A review on pollutants removal by Sono-photo -Fenton processes. Journal of Environmental Chemical Engineering, 8(5), 104330. https://doi.org/10.1016/j.jece.2020.104330

Nadeem, N., Zahid, M., Tabasum, A., Mansha, A., Jilani, A., Bhatti, I. A., & Bhatti, H. N. (2020). Degradation of reactive dye using heterogeneous photo-Fenton catalysts: ZnFe2O4 and GO-ZnFe2O4 composite. Materials Research Express, 7(1), 015519. https://doi.org/10.1088/2053-1591/ab66ee

Nasuha, N., Hameed, B. H., & Okoye, P. U. (2021). Dark-Fenton oxidative degradation of methylene blue and acid blue 29 dyes using sulfuric acid-activated slag of the steel-making process. Journal of Environmental Chemical Engineering, 9(1), 104831. https://doi.org/10.1016/j.jece.2020.104831

Neyens, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1–3), 33–50. https://doi.org/10.1016/S0304-3894(02)00282-0

Nguyen, T. T., Huynh, K. A., Padungthon, S., Pranudta, A., Amonpattaratkit, P., Tran, L. B., Phan, P. T., & Nguyen, N. H. (2021). Synthesis of natural flowerlike iron-alum oxide with special interaction of Fe-Si-Al oxides as an effective catalyst for heterogeneous Fenton process. Journal of Environmental Chemical Engineering, 9(4), 105732. https://doi.org/10.1016/j.jece.2021.105732

Noreen, S., Bhatti, H. N., Iqbal, M., Hussain, F., & Sarim, F. M. (2020). Chitosan, starch, polyaniline and polypyrrole biocomposite with sugarcane bagasse for the efficient removal of Acid Black dye. International Journal of Biological Macromolecules, 147, 439–452. https://doi.org/10.1016/j.ijbiomac.2019.12.257

Novoselova, L. Y. (2013). Composition, structure and sorbability of the thermally treated water deironing precipitate with respect to carbon monoxide. Powder Technology, 243, 149–153. https://doi.org/10.1016/j.powtec.2013.03.032

Ociński, D., Jacukowicz-Sobala, I., Mazur, P., Raczyk, J., & Kociołek-Balawejder, E. (2016). Water treatment residuals containing iron and manganese oxides for arsenic removal from water – Characterization of physicochemical properties and adsorption studies. Chemical Engineering Journal, 294, 210–221. https://doi.org/10.1016/j.cej.2016.02.111

Oliveira, C., Santosa, M. S. F., Maldonado-Hódar, F. J., Schaule, G., Alves, A., & Madeira, L. M. (2012). Use of pipe deposits from water networks as novel catalysts in paraquat peroxidation. Chemical Engineering Journal, 210, 339–349. https://doi.org/10.1016/j.cej.2012.09.001

Oller, I., Malato, S., & Sanchez-Perez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination – A review. Science of Total Environment, 409(20), 4141–4166. https://doi.org/10.1016/j.scitotenv.2010.08.061

Ong, D. C., Kan, C. Ch., Mae, Sh., Pingul-Ong, B., & de Luna, M. D. G. (2017). Utilization of groundwater treatment plant (GWTP) sludge for nickel removal from aqueous solutions: Isotherm and kinetic studies. Journal of Environmental Chemical Engineering, 5(6), 5746–5753. https://doi.org/10.1016/j.jece.2017.10.046

Pal, S., Singh, P. N., Verma, A., Kumar, A., Tiwary, D., Prakash, R., & Sinha, I. (2020). Visible light photo-Fenton catalytic properties of starch functionalized iron oxyhydroxide nanocomposites. Environmental Nanotechnology, Monitoring & Management, 14, 100311. https://doi.org/10.1016/j.enmm.2020.100311

Paredes-Laverde, M., Salamanca, M., Diaz-Corrales, J. D., Flórez, E., Silva-Agredo, J., & Torres-Palma, R. A. (2021). Understanding the removal of an anionic dye in textile wastewaters by adsorption on ZnCl2 activated carbons from rice and coffee husk wastes: A combined experimental and theoretical study. Journal of Environmental Chemical Engineering, 9(4), 105685. https://doi.org/10.1016/j.jece.2021.105685

Patel, A., Soni, S., Mittal, J., Mittal, A., & Arora, C. (2021). Sequestration of crystal violet from aqueous solution using ash of black turmeric rhizome. Desalination and Water Treatment, 220, 342–352. https://doi.org/10.5004/dwt.2021.26911

Prati, S., Milosevic, M., Sciutto, G., Bonacini, I., Kazarian, S. G., & Mazzeo, R. (2016). Analyses of trace amounts of dyes with a new enhanced sensitivity FTIR spectroscopic technique: MU-ATR (metal underlayer ATR spectroscopy). Analytica Chimica Acta, 941, 67–79. https://doi.org/10.1016/j.aca.2016.09.005

Perrotti, T. C., Freitas, N. S., Alzamora, M., Sánchez, D. R., & Carvalho, N. M. F. (2019). Green iron nanoparticles supported on amino-functionalized silica for removal of the dye methyl orange. Journal of Environmental Chemical Engineering, 7(4), 103237. https://doi.org/10.1016/j.jece.2019.103237

Pignatello, J. J., Oliveros, E., & Mackay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1–84. https://doi.org/10.1080/10643380500326564

Pinto, I. S. X., Pacheco, P. H. V. V., Coelho, J. V., Lorençon, E., Ardisson, J. D., Fabris, J. D., de Souza, P. P., Krambrock, K. W. H., Oliveira, L. C. A., & Pereira, M. C. (2012). Nanostructured δ-FeOOH: An efficient Fenton-like catalyst for the oxidation of organics in water. Applied Catalysis B: Environmental, 119–120, 175–182. https://doi.org/10.1016/j.apcatb.2012.02.026

Prucek, R., Hermanek, M., & Zbořil, R. (2009). An effect of iron(III) oxides crystallinity on their catalytic efficiency and applicability in phenol degradation – A competition between homogeneous and heterogeneous catalysis. Applied Catalysis A: General, 366(2), 325–332. https://doi.org/10.1016/j.apcata.2009.07.019

Rubeena, K. K., Prasad Reddy, P. H., Laiju, A. R., & Nidheesh, P. V. (2018). Iron impregnated biochars as heterogeneous Fenton catalyst for the degradation of acid red 1 dye. Journal of Environmental Management, 226, 320–328. https://doi.org/10.1016/j.jenvman.2018.08.055

Saha, P., & Chowdhury, Sh. (2011). Insight into adsorption thermodynamics. In M. Tadashi (Ed.), Thermodynamics, CC-BY-NC-SA (pp. 349–364). InTech. https://doi.org/10.5772/13474

Saharan, S., Kumar, V., Mittal, J., Sharma, V., & Sharma, A. K. (2021). Efficient ultrasonic assisted adsorption of organic pollutants employing bimetallic-carbon nanocomposites. Separation Science and Technology, 56(17), 2895–2908. https://doi.org/10.1080/01496395.2020.1866608

Sanchis, R., Dejoz, A., Vázquez, I., Vilarrasa-García, E., Jiménez-Jiménez J., Rodríguez-Castellón, E., Nieto, J. M. L., & Solsona, B. (2019). Ferric sludge derived from the process of water purification as an efficient catalyst and/or support for the removal of volatile organic compounds. Chemosphere, 219, 286–295. https://doi.org/10.1016/j.chemosphere.2018.12.002

Santos, V. P., Pereira, M. F. R., Faria, P. C. C., & Órfão, J. J. M. (2009). Decolourisation of dye solutions by oxidation with H2O2 in the presence of modified activated carbons. Journal of Hazardous Materials, 162(2–3), 736–742. https://doi.org/10.1016/j.jhazmat.2008.05.090

Siswoyo, E., Mihara, Y., & Tanaka, Sh. (2014). Determination of key components and adsorption capacity of a low cost adsorbent based on sludge of drinking water treatment plant to adsorb cadmium ion in water. Applied Clay Science, 97–98, 146–150. https://doi.org/10.1016/j.clay.2014.05.024

Sodaitienė, E., Gefenienė, A., Kaušpėdienė, D., Ragauskas, R., Vaičiūnienė, J., Selskienė, A., Jasulaitienė, V., & Ramanauskas, R. (2021). Sustainable removal of anodized aluminum dye by groundwater treatment waste: Experimental and modeling. Heliyon, 7(1), e05993. https://doi.org/10.1016/j.heliyon.2021.e05993

Soni, S., Bajpai, P. K., Bharti, D., Mittal, J., & Arora, C. (2020). Removal of crystal violet from aqueous solution using iron based metal organic framework. Desalination and Water Treatment Science and Engineering, 205, 386–399. https://doi.org/10.5004/dwt.2020.26387

Sun, Y., Gu, Y., & Zha, Q. (2021). A novel surface imprinted resin for the selective removal of metal-complexed dyes from aqueous solution in batch experiments: ACB GGN as a representative contaminant. Chemosphere, 280, 130611. https://doi.org/10.1016/j.chemosphere.2021.130611

Tang, Y., Li, M., Mu, C., Zhou, J., & Shi, B. (2019). Ultrafast and efficient removal of anionic dyes from wastewater by polyethyleneimine-modified silica nanoparticles. Chemosphere, 229, 570–579. https://doi.org/10.1016/j.chemosphere.2019.05.062

Thomas, N., Dionysiou, D. D., & Pillai, S. C. (2021). Heterogeneous Fenton catalysts: A review of recent advances. Journal of Hazardous Materials, 404(B), 124082. https://doi.org/10.1016/j.jhazmat.2020.124082

Van, H. T., Nguyen, L. H., Hoang, T. K., Tran, T. P., Vo, A. T., Pham, T. T., & Nguyen, X. C. (2019). Using FeO-constituted iron slag wastes as heterogeneous catalyst for Fenton and ozonation processes to degrade Reactive Red 24 from aqueous solution. Separation and Purification Technology, 224, 431–442. https://doi.org/10.1016/j.seppur.2019.05.048

Wilkins, R. C. (1974). The study of the kinetics and mechanism of reactions of transition metal complexes. Allyn and Bacon.

Wołowiec, M., Pruss, M., Komorowska-Kaufman, A., Lasocka Gomuła, I., Rzepa, G., & Bajda, T. (2019). The properties of sludge formed as a result of coagulation of backwash water from filters removing iron and manganese from groundwater. SN Applied Sciences, 1, 639. https://doi.org/10.1007/s42452-019-0653-7

Xiao, C., Jun Li, J., & Zhang, G. (2018). Synthesis of stable burger-like α-Fe2O3 catalysts: Formation mechanism and excellent photo-Fenton catalytic performance. Journal of Cleaner Production, 180, 550–559. https://doi.org/10.1016/j.jclepro.2018.01.127

Xu, H.-Y., Prasad, M., & Liu, Y. (2009). Schorl: a novel catalyst in mineral-catalyzed Fenton-like system for dyeing wastewater discoloration. Journal of Hazardous Materials, 165(1–3), 1186–1192. https://doi.org/10.1016/j.jhazmat.2008.10.108

Xu, W., Xue, W., Huang, H., Wang, J., Zhong, C., & Mei, D. (2021). Morphology controlled synthesis of α-Fe2O3-x with benzimidazole-modified Fe-MOFs for enhanced photo-Fenton-like catalysis. Applied Catalysis B: Environmental, 291, 120129. https://doi.org/10.1016/j.apcatb.2021.120129

Yao, Y., Wang, L., Sun, L., Zhu, S., Huang, Z., Mao, Y., Lu, W., & Chen, W. (2013). Efficient removal of dyes using heterogeneous Fenton catalysts based on activated carbon fibers with enhanced activity. Chemical Engineering Science, 101, 424. https://doi.org/10.1016/j.ces.2013.06.009

Zhang, T., Zhao, N., Li, J., Gong, H., An, T., Zhao, F., & Ma, H. (2017). Thermal behavior of nitrocellulose-based superthermites: Effects of nano-Fe2O3 with three morphologies. RSC Advances, 7(38), 23583. https://doi.org/10.1039/C6RA28502C

Zheng, X., Jiao, Y., Chai, F., Qu, F., Umar, A., & Wu, X. (2015). Template-free growth of well-crystalline α-Fe2O3 nanopeanuts with enhanced visible-light driven photocatalytic properties. Journal of Colloid and Interface Science, 457, 345–352. https://doi.org/10.1016/j.jcis.2015.07.023

Zhu, Y., Zhu, R., Xi, Y., Zhu, J., Zhu, G., & He, H. (2019). Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review. Applied Catalysis B: Environmental, 255, 117739. https://doi.org/10.1016/j.apcatb.2019.05.041

Zubrytė, E., Gefenienė, A., Kaušpėdienė, D., Ragauskas, R., Binkienė, R., Selskienė, A., & Pakštas, V. (2020). Fast removal of Pb(II) and Cu(II) from contaminated water by groundwater treatment waste: Impact of sorbent composition. Separation Science and Technology, 55(16), 2855–2868.
https://doi.org/10.1080/01496395.2019.1655455