Share:


The effect of relative density, granularity and size of geogrid apertures on the shear strength of the soil/geogrid interface

    Ali Lakirouhani Affiliation
    ; Mojgan Abbasian Affiliation
    ; Jurgis Medzvieckas Affiliation
    ; Romualdas Kliukas Affiliation

Abstract

The increasing use of geogrid in various geotechnical projects has made the evaluation of the shear behavior of soil reinforced with geogrid become particularly important. In this article, a series of large-scale direct shear tests have been performed on sand and gravel samples reinforced with geogrid. The purpose of the experiments was to investigate the impact of the geogrid mesh size and the relative density of the samples on the shear strength coefficient of the interface between soil and geogrid. In this study, 5 geogrids with different mesh sizes and one type of geotextile were used. According to the results, the average shear strength coefficient of sand and gravel samples reinforced with geogrid for different normal stresses and different relative densities was obtained between 0.72 and 0.94. As the relative density increases, the interface shear strength coefficient decreases, this means that the denser the sand, the more the shear strength of the sand/geogrid interface decreases. Based on the results, it was found that the contribution of particle interlocking in the shear resistance of the sand/geogrid interface is particularly important, so that the shear resistance coefficient of the interface increases with the increase in the size of the geogrid mesh.

Keyword : shear displacement, normal stress, mesh size, grain size, percent of open area, transverse rib, geotextile

How to Cite
Lakirouhani, A., Abbasian, M., Medzvieckas, J., & Kliukas, R. (2024). The effect of relative density, granularity and size of geogrid apertures on the shear strength of the soil/geogrid interface. Journal of Civil Engineering and Management, 30(8), 691–707. https://doi.org/10.3846/jcem.2024.22236
Published in Issue
Sep 25, 2024
Abstract Views
929
PDF Downloads
480
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abu-Farsakh, M. Y., & Coronel, J. (2006). Characterization of cohesive soil–geosynthetic interaction from large direct shear test. In 85th Transportation Research Board Annual Meeting, Washington, D.C., USA.

Abu-Farsakh, M., Coronel, J., & Tao, M. (2007). Effect of soil moisture content and dry density on cohesive soil–geosynthetic interactions using large direct shear tests. Journal of Materials in Civil Engineering, 19(7), 540–549. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:7(540)

Albuja-Sánchez, J., Cóndor, L., Oñate, K., Ruiz, S., & Lal, D. (2023). Influence of geogrid arrangement on the bearing capacity of a granular soil on physical models and its comparison to theoretical equations. SN Applied Sciences, 5(9), Article 250. https://doi.org/10.1007/s42452-023-05474-w

Alfaro, M. C., Miura, N., & Bergado, D. T. (1995). Soil-geogrid reinforcement interaction by pullout and direct shear tests. Geotechnical Testing Journal, 18(2), 157–167. https://doi.org/10.1520/GTJ10319J

Alimohammadi, H., Zheng, J., Schaefer, V. R., Siekmeier, J., & Velasquez, R. (2021). Evaluation of geogrid reinforcement of flexible pavement performance: A review of large-scale laboratory studies. Transportation Geotechnics, 27, Article 100471. https://doi.org/10.1016/j.trgeo.2020.100471

ASTM International. (2021). Standard test method for determining the shear strength of soil–geosynthetic and geosynthetic–geosynthetic interfaces by direct shear (ASTM D5321). West Conshohocken, PA. https://www.astm.org/d5321-12.html

Berg, R. R., Christopher, B. R., & Samtani, N. C. (2009). Design of mechanically stabilized earth walls and reinforced soil slopes (Volume I). Federal Highway Administration, United States.

Bergado, D. T., Chai, J. C., Abiera, H. O., Alfaro, M. C., & Balasubramaniam, A. S. (1993). Interaction between cohesive-frictional soil and various grid reinforcements. Geotextiles and Geomembranes, 12(4), 327–349. https://doi.org/10.1016/0266-1144(93)90008-C

Cancelli, A., Rimoldi, P., & Togni, S. (1992). Frictional characteristics of geogrids by means of direct shear and pull-out tests. In Proceedings of the International Symposium on Earth Reinforcement Practice (Vol. 1, pp. 29–34), Kyushu, Japan.

Cardile, G., Gioffrè, D., Moraci, N., & Calvarano, L. S. (2017). Modelling interference between the geogrid bearing members under pullout loading conditions. Geotextiles and Geomembranes, 45(3), 169–177. https://doi.org/10.1016/j.geotexmem.2017.01.008

Cardile, G., Pisano, M., Recalcati, P., & Moraci, N. (2021). A new apparatus for the study of pullout behaviour of soil-geosynthetic interfaces under sustained load over time. Geotextiles and Geomembranes, 49(6), 1519–1528. https://doi.org/10.1016/j.geotexmem.2021.07.001

Chang, D.-T., Chang, F. C., Yang, G. S., & Yan, C. Y. (2000). The influence factors study for geogrid pullout test. In P. E. Stevenson (Ed.), Grips, clamps, clamping techniques, and strain measurement for testing of geosynthetics (Vol. STP1379-EB). ASTM International. https://doi.org/10.1520/STP13477S

Chen, C., McDowell, G. R., & Thom, N. H. (2014). Investigating geogrid-reinforced ballast: Experimental pull-out tests and discrete element modelling. Soils and Foundations, 54(1), 1–11. https://doi.org/10.1016/j.sandf.2013.12.001

Ezzein, F. M., & Bathurst, R. J. (2014). A new approach to evaluate soil-geosynthetic interaction using a novel pullout test apparatus and transparent granular soil. Geotextiles and Geomembranes, 42(3), 246–255. https://doi.org/10.1016/j.geotexmem.2014.04.003

Farrag, K., Acar, Y. B., & Juran, I. (1993). Pull-out resistance of geogrid reinforcements. Geotextiles and Geomembranes, 12(2), 133–159. https://doi.org/10.1016/0266-1144(93)90003-7

Ferreira, F. B., Vieira, C. S., & Lopes, M. d. L. (2020). Pullout behavior of different geosynthetics – Influence of soil density and moisture content. Frontiers in Built Environment, 6. https://doi.org/10.3389/fbuil.2020.00012

Hasanzadehshooiili, H., Mahinroosta, R., Lakirouhani, A., & Oshtaghi, V. (2014). Using artificial neural network (ANN) in prediction of collapse settlements of sandy gravels. Arabian Journal of Geosciences, 7(6), 2303–2314. https://doi.org/10.1007/s12517-013-0858-9

Horpibulsuk, S., & Niramitkornburee, A. (2010). Pullout resistance of bearing reinforcement embedded in sand. Soils and Foundations, 50(2), 215–226. https://doi.org/10.3208/sandf.50.215

Indraratna, B., Karimullah Hussaini, S. K., & Vinod, J. S. (2012). On the shear behavior of ballast-geosynthetic interfaces. Geotechnical Testing Journal, 35(2), 305–312. https://doi.org/10.1520/GTJ103317

Jewell, R. A. (1990). Reinforcement bond capacity. Géotechnique, 40(3), 513–518. https://doi.org/10.1680/geot.1990.40.3.513

Lakirouhani, A., Bahrehdar, M., & Hosseini, S. M. (2018). Investigation about shear behavior of sand reinforced with geotextile with emphasis on shear zone. Sharif Journal of Civil Engineering, 34.2(2.1), 99–108. https://doi.org/10.24200/j30.2018.1345

Lakirouhani, A., Mousakhani, F., & Moazzami, A. (2023). Investigating the effect of particle size, granulation and concrete block on the behavior and shear strength of granular soils, with emphasis on the shear zone. Road, 31(117), 213–230. https://doi.org/10.22034/road.2023.379498.2130

Liu, C.-N., Ho, Y.-H., & Huang, J.-W. (2009a). Large scale direct shear tests of soil/PET-yarn geogrid interfaces. Geotextiles and Geomembranes, 27(1), 19–30. https://doi.org/10.1016/j.geotexmem.2008.03.002

Liu, C.-N., Zornberg J. G., Chen, T.-C., Ho, Y.-H., & Lin, B.-H. (2009b). Behavior of geogrid-sand interface in direct shear mode. Journal of Geotechnical and Geoenvironmental Engineering, 135(12), 1863–1871. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000150

Lopes, M. L., & Ladeira, M. (1996). Influence of the confinement, soil density and displacement rate on soil-geogrid interaction. Geotextiles and Geomembranes, 14(10), 543–554. https://doi.org/10.1016/S0266-1144(97)83184-6

Lopes, M. J., & Lopes, M. L. (1999). Soil-geosynthetic interaction – Influence of soil particle size and geosynthetic structure. Geosynthetics International, 6(4), 261–282. https://doi.org/10.1680/gein.6.0153

Mochizuki, A., Zhussupbekov, A. Z., Fujisawa, J., Tanyrbergenova, G., & Tulebekova, A. (2021). Strength anisotropy of compacted sandy material. Soil Mechanics and Foundation Engineering, 57(6), 480–490. https://doi.org/10.1007/s11204-021-09696-1

Mochizuki, A., Zhussupbekov, A., Zharkenov, Y., Akhazhanov, S. (2023). Strength ellipses of induced anisotropy for a compacted sandy material. In A. Zhussupbekov, S. Sarsembayeva, & V. N. Kaliakin (Eds.), Smart geotechnics for smart societies (pp. 291–299). CRC Press. https://doi.org/10.1007/s11204-021-09696-1

Moraci, N., & Gioffrè, D. (2006). A simple method to evaluate the pullout resistance of extruded geogrids embedded in a compacted granular soil. Geotextiles and Geomembranes, 24(2), 116–128. https://doi.org/10.1016/j.geotexmem.2005.11.001

Moraci, N., & Recalcati, P. (2006). Factors affecting the pullout behaviour of extruded geogrids embedded in a compacted granular soil. Geotextiles and Geomembranes, 24(4), 220–242. https://doi.org/10.1016/j.geotexmem.2006.03.001

Ochiai, H., Otani, J., Hayashic, S., & Hirai, T. (1996). The pull-out resistance of geogrids in reinforced soil. Geotextiles and Geomembranes, 14(1), 19–42. https://doi.org/10.1016/0266-1144(96)00027-1

Palmeira, E. M. (2004). Bearing force mobilisation in pull-out tests on geogrids. Geotextiles and Geomembranes, 22(6), 481–509. https://doi.org/10.1016/j.geotexmem.2004.03.007

Palmeira, E. M. (2009). Soil–geosynthetic interaction: Modelling and analysis. Geotextiles and Geomembranes, 27(5), 368–390. https://doi.org/10.1016/j.geotexmem.2009.03.003

Palmeria, E. M., & Milligan, G. W. E. (1989). Scale and other factors affecting the results of pull-out tests of grids buried in sand. Géotechnique, 39(3), 511–542. https://doi.org/10.1680/geot.1989.39.3.511

Park, K., Kim, D., Park, J., & Na, H. (2021). The determination of pullout parameters for sand with a geogrid. Applied Sciences, 11(1), Article 355. https://doi.org/10.3390/app11010355

Prashanth, V., Murali Krishna, A., & Dash, S. K. (2016). Pullout tests using modified direct shear test setup for measuring soil–geosynthetic interaction parameters. International Journal of Geosynthetics and Ground Engineering, 2(2), Article 10. https://doi.org/10.1007/s40891-016-0050-x

Praveen, G. V., & Kurre, P. (2021). Large direct shear testing to evaluate the interaction behaviour of murrum soil and geosynthetics for the reinforced soil construction. Materials Today: Proceedings, 39, 500–503. https://doi.org/10.1016/j.matpr.2020.08.229

Sakleshpur, V. A., Prezzi, M., Salgado, R., Siddiki, N. Z., & Choi, Y. S. (2019). Large-scale direct shear testing of geogrid-reinforced aggregate base over weak subgrade. International Journal of Pavement Engineering, 20(6), 649–658. https://doi.org/10.1080/10298436.2017.1321419

Sharbaf, M., & Ghafoori, N. (2021). Laboratory evaluation of geogrid-reinforced flexible pavements. Transportation Engineering, 4, Article 100070. https://doi.org/10.1016/j.treng.2021.100070

Sieira, A. C. C. F., Gerscovich, D. M. S., & Sayão, A. S. F. J. (2009). Displacement and load transfer mechanisms of geogrids under pullout condition. Geotextiles and Geomembranes, 27(4), 241–253. https://doi.org/10.1016/j.geotexmem.2008.11.012

Skuodis, Š., Dirgėlienė, N., & Medzvieckas, J. (2020). Using triaxial tests to determine the shearing strength of geogrid-reinforced sand. Studia Geotechnica et Mechanica, 42, 341–354. https://doi.org/10.2478/sgem-2020-0005

Sugimoto, M., Alagiyawanna, A. M. N., & Kadoguchi, K. (2001). Influence of rigid and flexible face on geogrid pullout tests. Geotextiles and Geomembranes, 19(5), 257–277. https://doi.org/10.1016/S0266-1144(01)00011-5

Suksiripattanapong, C., Horpibulsuk, S., Udomchai, A., Arulrajah, A., & Tangsutthinon, T. (2020). Pullout resistance mechanism of bearing reinforcement embedded in coarse-grained soils: Laboratory and field investigations. Transportation Geotechnics, 22, Article 100297. https://doi.org/10.1016/j.trgeo.2019.100297

Sweta, K., & Hussaini, S. K. K. (2018). Effect of shearing rate on the behavior of geogrid-reinforced railroad ballast under direct shear conditions. Geotextiles and Geomembranes, 46(3), 251–256. https://doi.org/10.1016/j.geotexmem.2017.12.001

Tatlisoz, N., Edil, T. B., & Benson, C. H. (1998). Interaction between reinforcing geosynthetics and soil-tire chip mixtures. Journal of Geotechnical and Geoenvironmental Engineering, 124(11), 1109–1119. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:11(1109)

Xu, Y., Williams, D. J., Serati, M., & Vangsness, T. (2018). Effects of scalping on direct shear strength of crusher run and crusher run/geogrid interface. Journal of Materials in Civil Engineering, 30(9), Article 04018206. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002411

Zhussupbekov, A., Tulebekova, A., Zhumadilov, I., & Zhankina, A. (2020). Tests of soils on triaxial device. KEM. https://doi.org/10.4028/www.scientific.net/kem.857.228