Share:


Intelligent prediction of the frost resistance of high-performance concrete: a machine learning method

    Jian Zhang Affiliation
    ; Yuan Cao Affiliation
    ; Linyu Xia Affiliation
    ; Desen Zhang Affiliation
    ; Wen Xu Affiliation
    ; Yang Liu Affiliation

Abstract

Frost resistance in very cold areas is an important engineering issue for the durability of concrete, and the efficient and accurate prediction of the frost resistance of concrete is a crucial basis for determining reasonable design mix proportions. For a quick and accurate prediction of the frost resistance of concrete, a Bayesian optimization (BO)-random forest (RF) approach was used to establish a frost resistance prediction model that consists of three phases. A case study of a key national engineering project results show that (1) the RF can be used to effectively screen the factors that influence concrete frost resistance. (2) R2 of BO-RF for the training set and the test set are 0.967 and 0.959, respectively, which are better than those of the other algorithms. (3) Using the test data from the first section of the project for prediction, good results are obtained for the second section. The proposed BO-RF hybrid algorithm can accurately and quickly predict the frost resistance of concrete, and provide a reference basis for intelligent prediction of concrete durability.

Keyword : frost resistance, durability of concrete, random forest, Bayesian optimization, mix proportion

How to Cite
Zhang, J., Cao, Y., Xia, L., Zhang, D., Xu, W., & Liu, Y. (2023). Intelligent prediction of the frost resistance of high-performance concrete: a machine learning method. Journal of Civil Engineering and Management, 29(6), 516–529. https://doi.org/10.3846/jcem.2023.19226
Published in Issue
Aug 22, 2023
Abstract Views
1038
PDF Downloads
376
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abou Elassad, E. Z., Mousannif, H., & Al Moatassime, H. (2020). A proactive decision support system for predicting traffic crash events: A critical analysis of imbalanced class distribution. Knowledge-Based Systems, 205, 106314. https://doi.org/10.1016/j.knosys.2020.106314

Ala’raj, M., & Abbod, M. F. (2016). Classifiers consensus system approach for credit scoring. Knowledge-Based Systems, 104, 89–105. https://doi.org/10.1016/j.knosys.2016.04.013

Amran, M., Huang, S.-S., Onaizi, A. M., Makul, N., Abdelgader, H. S., & Ozbakkaloglu, T. (2022). Recent trends in ultra-high performance concrete (UHPC): Current status, challenges, and future prospects. Construction and Building Materials, 352, 129029. https://doi.org/10.1016/j.conbuildmat.2022.129029

Ashraf, W., Glinicki, M. A., & Olek, J. (2018). Statistical analysis and probabilistic design approach for freeze–thaw performance of ordinary Portland cement concrete. Journal of Materials in Civil Engineering, 30(11), 04018294. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002494

Aulia, A., Jeong, D., Saaid, I. M., Kania, D., Shuker, M. T., & El-Khatib, N. A. (2019). A Random Forests-based sensitivity analysis framework for assisted history matching. Journal of Petroleum Science and Engineering, 181, 106237. https://doi.org/10.1016/j.petrol.2019.106237

Azimi-Pour, M., Eskandari-Naddaf, H., & Pakzad, A. (2020). Linear and non-linear SVM prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete. Construction and Building Materials, 230, 117021. https://doi.org/10.1016/j.conbuildmat.2019.117021

Belalia Douma, O., Boukhatem, B., Ghrici, M., & Tagnit-Hamou, A. (2016). Prediction of properties of self-compacting concrete containing fly ash using artificial neural network. Neural Computing and Applications, 28(S1), 707–718. https://doi.org/10.1007/s00521-016-2368-7

Ben Chaabene, W., Flah, M., & Nehdi, M. L. (2020). Machine learning prediction of mechanical properties of concrete: Critical review. Construction and Building Materials, 260, 119889. https://doi.org/10.1016/j.conbuildmat.2020.119889

Benedet, L., Acuña-Guzman, S. F., Faria, W. M., Silva, S. H. G., Mancini, M., Teixeira, A. F. d. S., Pereira Pierangeli, L. M., Acerbi Júnior, F. W., Gomide, L. R., Pádua Júnior, A. L., de Souza, I. A., de Menezes, M. D., Marques, J. J., Guilherme, L. R. G., & Curi, N. (2021). Rapid soil fertility prediction using X-ray fluorescence data and machine learning algorithms. CATENA, 197, 105003. https://doi.org/10.1016/j.catena.2020.105003

Boukhatem, B., Kenai, S., Tagnit-Hamou, A., & Ghrici, M. (2011). Application of new information technology on concrete: An overview. Journal of Civil Engineering and Management, 17(2), 248–258. https://doi.org/10.3846/13923730.2011.574343

Cai, R., Han, T., Liao, W., Huang, J., Li, D., Kumar, A., & Ma, H. (2020). Prediction of surface chloride concentration of marine concrete using ensemble machine learning. Cement and Concrete Research, 136, 106164. https://doi.org/10.1016/j.cemconres.2020.106164

Chen, H., Deng, T., Du, T., Chen, B., Skibniewski, M. J., & Zhang, L. (2022). An RF and LSSVM–NSGA-II method for the multi-objective optimization of high-performance concrete durability. Cement and Concrete Composites, 129, 104446. https://doi.org/10.1016/j.cemconcomp.2022.104446

Chen, H., Cao, Y., Liu, Y., Qin, Y., & Xia, L. (2023a). Enhancing the durability of concrete in severely cold regions: Mix proportion optimization based on machine learning. Construction and Building Materials, 371, 130644. https://doi.org/10.1016/j.conbuildmat.2023.130644

Chen, H., Li, X., Feng, Z., Wang, L., Qin, Y., Skibniewski, M. J., Chen, Z.-S., & Liu, Y. (2023b). Shield attitude prediction based on Bayesian-LGBM machine learning. Information Sciences, 632, 105–129. https://doi.org/10.1016/j.ins.2023.03.004

Cheng, M.-Y., & Hoang, N.-D. (2016). A self-adaptive fuzzy inference model based on least squares SVM for estimating compressive strength of rubberized concrete. International Journal of Information Technology & Decision Making, 15(3), 603–619. https://doi.org/10.1142/s0219622016500140

Chun, P.-j., Ujike, I., Mishima, K., Kusumoto, M., & Okazaki, S. (2020). Random forest-based evaluation technique for internal damage in reinforced concrete featuring multiple nondestructive testing results. Construction and Building Materials, 253, 119238. https://doi.org/10.1016/j.conbuildmat.2020.119238

DeRousseau, M. A., Kasprzyk, J. R., & Srubar, W. V. (2018). Computational design optimization of concrete mixtures: A review. Cement and Concrete Research, 109, 42–53. https://doi.org/10.1016/j.cemconres.2018.04.007

Ding, H., Na, J., Jiang, S., Zhu, J., Liu, K., Fu, Y., & Li, F. (2021). Evaluation of three different machine learning methods for object-based artificial terrace mapping – A case study of the Loess Plateau, China. Remote Sensing, 13(5), 1021. https://doi.org/10.3390/rs13051021

Dvorkin, L. (2019). Design estimation of concrete frost resistance. Construction and Building Materials, 211, 779–784. https://doi.org/10.1016/j.conbuildmat.2019.03.108

Gao, Y., Jing, H. W., Zhao, Z. L., Shi, X. S., & Li, L. (2021). Influence of ultrasonication energy on reinforcing-roles of CNTs to strengthen ITZ and corresponding anti-permeability properties of concrete. Construction and Building Materials, 303, 124451. https://doi.org/10.1016/j.conbuildmat.2021.124451

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13(4), 455–492. https://doi.org/10.1023/A:1008306431147

Ke, X., & Duan, Y. (2021). A Bayesian machine learning approach for inverse prediction of high-performance concrete ingredients with targeted performance. Construction and Building Materials, 270, 121424. https://doi.org/10.1016/j.conbuildmat.2020.121424

Keleştemur, O., Yildiz, S., Gökçer, B., & Arici, E. (2014). Statistical analysis for freeze–thaw resistance of cement mortars containing marble dust and glass fiber. Materials & Design, 60, 548–555. https://doi.org/10.1016/j.matdes.2014.04.013

Kewalramani, M. A., & Gupta, R. (2006). Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks. Automation in Construction, 15(3), 374–379. https://doi.org/10.1016/j.autcon.2005.07.003

Koya, B. P., Aneja, S., Gupta, R., & Valeo, C. (2022). Comparative analysis of different machine learning algorithms to predict mechanical properties of concrete. Mechanics of Advanced Materials and Structures, 29(25), 4032–4043. https://doi.org/10.1080/15376494.2021.1917021

Lakshmanaprabu, S. K., Shankar, K., Ilayaraja, M., Nasir, A. W., Vijayakumar, V., & Chilamkurti, N. (2019). Random forest for big data classification in the internet of things using optimal features. International Journal of Machine Learning and Cybernetics, 10(10), 2609–2618. https://doi.org/10.1007/s13042-018-00916-z

Łaźniewska-Piekarczyk, B. (2013). The type of air-entraining and viscosity modifying admixtures and porosity and frost durability of high performance self-compacting concrete. Construction and Building Materials, 40, 659–671. https://doi.org/10.1016/j.conbuildmat.2012.11.032

Lee, B., Kim, K., Hwang, H., Kim, Y. S., Chung, E. H., Yoon, J.-S., Cho, H. J., & Park, J. D. (2021). Development of a machine learning model for predicting pediatric mortality in the early stages of intensive care unit admission. Scientific Reports, 11, 1263. https://doi.org/10.1038/s41598-020-80474-z

Li, Y.-S., Chi, H., Shao, X.-Y., Qi, M.-L., & Xu, B.-G. (2020). A novel random forest approach for imbalance problem in crime linkage. Knowledge-Based Systems, 195, 105738. https://doi.org/10.1016/j.knosys.2020.105738

Liang, X. (2019). Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization. Computer-Aided Civil and Infrastructure Engineering, 34(5), 415–430. https://doi.org/10.1111/mice.12425

Lin, J.-P., & Liu, J.-h. (2006). Support vector machine and optimized method for spectral analysis. Spectroscopy and Spectral Analysis, 26(12), 2232–2235.

Liu, J.-C., & Zhang, Z. (2020). A machine learning approach to predict explosive spalling of heated concrete. Archives of Civil and Mechanical Engineering, 20(4), 134. https://doi.org/10.1007/s43452-020-00135-w

Liu, Y., Chen, H. Y., Zhang, L. M., & Wu, X. (2020). Energy consumption prediction and diagnosis of public buildings based on support vector machine learning: A case study in China. Journal of Cleaner Production, 272, 129232. https://doi.org/10.1016/j.jclepro.2020.122542

Liu, Y., Chen, H., Zhang, L., & Feng, Z. (2021a). Enhancing building energy efficiency using a random forest model: A hybrid prediction approach. Energy Reports, 7, 5003–5012. https://doi.org/10.1016/j.egyr.2021.07.135

Liu, Y., Chen, H., Zhang, L., & Wang, X. (2021b). Risk prediction and diagnosis of water seepage in operational shield tunnels based on random forest. Journal of Civil Engineering and Management, 27(7), 539–552. https://doi.org/10.3846/jcem.2021.14901

Liu, Y., Cao, Y., Wang, L., Chen, Z.-S., & Qin, Y. (2022). Prediction of the durability of high-performance concrete using an integrated RF-LSSVM model. Construction and Building Materials, 356, 129232. https://doi.org/10.1016/j.conbuildmat.2022.129232

Luan, H., Wu, J., & Pan, J. (2020). Saline water absorption behavior and critical saturation degree of recycled aggregate concrete during freeze-thaw cycles. Construction and Building Materials, 258, 119640. https://doi.org/10.1016/j.conbuildmat.2020.119640

Lundström, J., & Verikas, A. (2013). Assessing print quality by machine in offset colour printing. Knowledge-Based Systems, 37, 70–79. https://doi.org/10.1016/j.knosys.2012.07.022

Mai, H.-V. T., Nguyen, T.-A., Ly, H.-B., Tran, V. Q., & Zhang, J. (2021). Prediction compressive strength of concrete containing GGBFS using random forest model. Advances in Civil Engineering, 2021, 6671448. https://doi.org/10.1155/2021/6671448

Marcos-Pasero, H., Colmenarejo, G., Aguilar-Aguilar, E., de Molina, A. R., Reglero, G., & Loria-Kohen, V. (2021). Ranking of a wide multidomain set of predictor variables of children obesity by machine learning variable importance techniques. Scientific Reports, 11, 1910. https://doi.org/10.1038/s41598-021-81205-8

Martinez-Cantin, R. (2014). BayesOpt: A Bayesian Optimization Library for nonlinear optimization, experimental design and bandits. Journal of Machine Learning Research, 15, 3735–3739.

Nápoles, G., Grau, I., & Salgueiro, Y. (2020). Recommender system using Long-term Cognitive Networks. Knowledge-Based Systems, 206, 106372. https://doi.org/10.1016/j.knosys.2020.106372

Nguyen, T. D., Gupta, S., Rana, S., & Venkatesh, S. (2018). Stable Bayesian optimization. International Journal of Data Science and Analytics, 6(4), 327–339. https://doi.org/10.1007/s41060-018-0119-9

Nguyen, T. T., Ngoc, L. T., Vu, H. H., & Thanh, T. P. (2021). Machine learning-based model for predicting concrete compressive strength. International Journal of GEOMATE, 20, 197–204. https://doi.org/10.21660/2020.77.j2019

Nilsen, V., Pham, L. T., Hibbard, M., Klager, A., Cramer, S. M., & Morgan, D. (2019). Prediction of concrete coefficient of thermal expansion and other properties using machine learning. Construction and Building Materials, 220, 587–595. https://doi.org/10.1016/j.conbuildmat.2019.05.006

Niu, D., Wang, K., Sun, L., Wu, J., & Xu, X. (2020). Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: A case study. Applied Soft Computing, 93, 106389. https://doi.org/10.1016/j.asoc.2020.106389

Özcan, F., Atiş, C. D., Karahan, O., Uncuoğlu, E., & Tanyildizi, H. (2009). Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete. Advances in Engineering Software, 40(9), 856–863. https://doi.org/10.1016/j.advengsoft.2009.01.005

People’s Republic of China. (2019). Standard for design of concrete structure durability (GB/T 50476-2019). National standard.

Puga, J. L., Krzywinski, M., & Altman, N. (2015). Bayes’ theorem. Nature Methods, 12(4), 277–278. https://doi.org/10.1038/nmeth.3335

Qian, Y. W., Zeng, G., Pan, Y., Liu, Y., Zhang, L. M., & Li, K. (2021). A prediction model for high risk of positive RT-PCR test results in COVID-19 patients discharged from Wuhan Leishenshan Hospital, China. Frontiers in Public Health, 9. https://doi.org/10.3389/fpubh.2021.778539

Rayal, R., Khanna, D., Sandhu, J. K., Hooda, N., & Rana, P. S. (2017). N-semble: Neural network based ensemble approach. International Journal of Machine Learning and Cybernetics, 10(2), 337–345. https://doi.org/10.1007/s13042-017-0718-0

Smith, S. H., Kurtis, K. E., & Tien, I. (2018). Probabilistic evaluation of concrete freeze-thaw design guidance. Materials and Structures, 51, 124. https://doi.org/10.1617/s11527-018-1259-z

Sonebi, M., Cevik, A., Grünewald, S., & Walraven, J. (2016). Modelling the fresh properties of self-compacting concrete using support vector machine approach. Construction and Building Materials, 106, 55–64. https://doi.org/10.1016/j.conbuildmat.2015.12.035

Tumidajski, P. J. (2005). Relationship between resistivity, diffusivity and microstructural descriptors for mortars with silica fume. Cement and Concrete Research, 35(7), 1262–1268. https://doi.org/10.1016/j.cemconres.2004.10.007

Wei, Y., Han, A., & Xue, X. (2021). A data-driven study for evaluating the compressive strength of high-strength concrete. International Journal of Machine Learning and Cybernetics, 12(12), 3585–3595. https://doi.org/10.1007/s13042-021-01407-4

Wu, Q., Ye, Y., Zhang, H., Ng, M. K., & Ho, S.-S. (2014). ForesTexter: An efficient random forest algorithm for imbalanced text categorization. Knowledge-Based Systems, 67, 105–116. https://doi.org/10.1016/j.knosys.2014.06.004

Wu, X., Wang, L., Chen, B., Feng, Z., Qin, Y., Liu, Q., & Liu, Y. (2022a). Multi-objective optimization of shield construction parameters based on random forests and NSGA-II. Advanced Engineering Informatics, 54, 101751. https://doi.org/10.1016/j.aei.2022.101751

Wu, X., Zheng, S., Feng, Z., Chen, B., Qin, Y., Xu, W., & Liu, Y. (2022b). Prediction of the frost resistance of high-performance concrete based on RF-REF: A hybrid prediction approach. Construction and Building Materials, 333, 127132. https://doi.org/10.1016/j.conbuildmat.2022.127132

Wu, X., Li, X., Qin, Y., Xu, W., & Liu, Y. (2023). Intelligent multiobjective optimization design for NZEBs in China: Four climatic regions. Applied Energy, 339, 120934. https://doi.org/10.1016/j.apenergy.2023.120934

Xia, Y., Liu, C., Li, Y., & Liu, N. (2017). A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring. Expert Systems with Applications, 78, 225–241. https://doi.org/10.1016/j.eswa.2017.02.017

Yan, M., & Shen, Y. (2022). Traffic accident severity prediction based on random forest. Sustainability, 14(3), 1729. https://doi.org/10.3390/su14031729

Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295–316. https://doi.org/10.1016/j.neucom.2020.07.061

Yang, Q. R., Guo, B. L., Yang, Q. B., & Li, Q. Q. (2011). Experimental study on durability of air-entrained concrete of Qingdao Bay Bridge. In Applied Mechanics and Materials (Vols. 99–100, pp. 142–145). Trans Tech Publications, Ltd. https://doi.org/10.4028/www.scientific.net/AMM.99-100.142

Yang, K.-H., Cho, A.-R., & Song, J.-K. (2012). Effect of water–binder ratio on the mechanical properties of calcium hydroxide-based alkali-activated slag concrete. Construction and Building Materials, 29, 504–511. https://doi.org/10.1016/j.conbuildmat.2011.10.062

Yaseen, Z. M., Deo, R. C., Hilal, A., Abd, A. M., Bueno, L. C., Salcedo-Sanz, S., & Nehdi, M. L. (2018). Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Advances in Engineering Software, 115, 112–125. https://doi.org/10.1016/j.advengsoft.2017.09.004

Yazıcı, H. (2008). The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze–thaw resistance of self-compacting concrete. Construction and Building Materials, 22(4), 456–462. https://doi.org/10.1016/j.conbuildmat.2007.01.002

Yuan, J., Du, Z., Wu, Y., & Xiao, F. (2019). Salt-frost resistance performance of airfield concrete based on meso-structural parameters. Journal of Materials in Civil Engineering, 31(9). https://doi.org/10.1061/(asce)mt.1943-5533.0002789

Zhang, H.-R., & Min, F. (2016). Three-way recommender systems based on random forests. Knowledge-Based Systems, 91, 275–286. https://doi.org/10.1016/j.knosys.2015.06.019

Zhou, Q., Zhou, H., & Li, T. (2016). Cost-sensitive feature selection using random forest: Selecting low-cost subsets of informative features. Knowledge-Based Systems, 95, 1–11. https://doi.org/10.1016/j.knosys.2015.11.010