Share:


Time reduction effects of steel connected precast concrete components for heavily loaded long-span buildings

    Ho-Haeng Lee   Affiliation
    ; Ki-Ho Kim   Affiliation
    ; Seunghyun Son   Affiliation
    ; Kwangheon Park   Affiliation
    ; Sunkuk Kim   Affiliation

Abstract

The characteristics of large logistics buildings are their long spans and the ability to take heavy loads. Usually, PC components are used for their frames to ensure quick construction. However, the erection of most pin jointed PC structures increases the time and the cost incurred for ensuring structural stability and construction safety. To solve this problem, “smart” frames have been developed, which have tapered steel joints at both ends of the PC components. A smart frame with the moment frame concept not only assures structural stability and construction safety, but it also simplifies and quickens the erection because of its tapered joint detail. The purpose of this study is to compare the erection time and cost effects of the steel connected PC components for heavily loaded long-span logistics buildings with the existing PC frames. For this study, we selected a logistics building constructed with PC components and redesigned it as the smart frame, and the erection simulations were performed. We analyzed the time reduction effects of the smart frame. Our results confirmed that the use of the smart frame reduced the erection time and cost practically. Our investigations will help develop the erection simulation algorithms for smart frames.

Keyword : PC erection, logistics building, time reduction, cost reduction, steel connected PC frame

How to Cite
Lee, H.-H., Kim, K.-H., Son, S., Park, K., & Kim, S. (2020). Time reduction effects of steel connected precast concrete components for heavily loaded long-span buildings. Journal of Civil Engineering and Management, 26(2), 160-174. https://doi.org/10.3846/jcem.2020.11673
Published in Issue
Feb 7, 2020
Abstract Views
1967
PDF Downloads
636
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Arditi, D., Ergin, U., & Günhan, S. (2000). Factors affecting the use of precast concrete systems. Journal of Architectural Engineering, 6(3), 79-86. https://doi.org/10.1061/(ASCE)1076-0431(2000)6:3(79)

Casadei, P., Nanni, A., Alkhrdaji, T., & Thomas, J. (2005). Performance of double-T prestressed concrete beams strengthened with steel reinforcement polymer. Advances in Structural Engineering, 8(4), 427-442. https://doi.org/10.1260/136943305774353124

Choi, H. K., Choi, Y. C., & Choi, C. S. (2013). Development and testing of precast concrete beam-to-column connections. Engineering Structures, 56, 1820-1835. https://doi.org/10.1016/j.engstruct.2013.07.021

Elliott, K. S., & Jolly, C. (2013). Multi-storey precast concrete framed structures. Wiley. Retrieved from https://onlinelibrary.wiley.com/doi/book/10.1002/9781118587379

Fathi, M., Parvizi, M., Karimi, J., & Afreidoun, M. H. (2018). Experimental and numerical study of a proposed moment-resisting connection for precast concrete frames. Scientia Iranica, 25(4), 1977-1986. https://doi.org/10.24200/SCI.2017.4200

Holden, T., Restrepo, J., & Mander, J. B. (2003). Seismic performance of precast reinforced and prestressed concrete walls. Journal of Structural Engineering, 129(3), 286-296. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:3(286)

Hong, W. K., Kim, G., Lim, C., & Kim, S. (2017). Development of a steel-guide connection method for composite precast concrete components. Journal of Civil Engineering and Management, 23(1), 59-66. https://doi.org/10.3846/13923730.2014.975740

Hong, W. K., Kim, J. M., Park, S. C., Kim, S. I., Lee, S. G., Lee, H. C., & Yoon, K. J. (2009). Composite beam composed of steel and pre‐cast concrete (modularized hybrid system) Part II: analytical investigation. The Structural Design of Tall and Special Buildings, 18(8), 891-905. https://doi.org/10.1002/tal.484

Hong, W. K., Kim, S. I., Park, S. C., Kim, J. M., Lee, S. G., Yoon, K. J., & Kim, S. K. (2010a). Composite beam composed of steel and precast concrete (modularized hybrid system). Part IV: Application for multi‐residential housing. The Structural Design of Tall and Special Buildings, 19(7), 707-727. https://doi.org/10.1002/tal.506

Hong, W. K., Park, S. C., Lee, H. C., Kim, J. M., Kim, S. I., Lee, S. G., & Yoon, K. J. (2010b). Composite beam composed of steel and precast concrete (modularized hybrid system). Part III: Application for a 19‐storey building. The Structural Design of Tall and Special Buildings, 19(6), 679-706. https://doi.org/10.1002/tal.507

Hong, W. K., Lee, G., Lee, S., & Kim, S. (2014). Algorithms for in-situ production layout of composite precast concrete members. Automation in Construction, 41, 50-59. https://doi.org/10.1016/j.autcon.2014.02.005

Hong, W. K., Park, S. C., Kim, S., & Nzabonimpa, J. D. (2016). Analytical investigation of pre‐stressed, pre‐cast beams with steel pipe sleeves. The Structural Design of Tall and Special Buildings, 25(1), 60-71. https://doi.org/10.1002/tal.1228

Hong, W. K., Park, S. G., Kim, J. M., Kim, S. I., Yoon, K. J., & Lee, H. C. (2008). Composite beam composed of steel and precast concrete (Modularized Hybrid System, MHS). Part I: experimental investigation. The Structural Design of Tall and Special Buildings, 19(3), 275-289. https://doi.org/10.1002/tal.485

Hurst, M. K. (2017). Prestressed concrete design. London and New York: Spon Press.

Joo, J. K., Kim, S. E., Lee, G. J., Kim, S. K., & Lee, S. H. (2012a). A study on the lifting progress for composite precast concrete members of green frame. Korean Journal of Construction Engineering and Management, 13(3), 34-42. https://doi.org/10.6106/KJCEM.2012.13.3.034

Joo, J. K., Kim, S. K., Lee, G. J., & Lim, C. Y. (2012b). Cost analysis of the structural work of green frame. Journal of the Korea Institute of Building Construction, 12(4), 401-414. https://doi.org/10.5345/JKIBC.2012.12.4.401

Kim, J., Hong, W. K., & Lim, G. T. (2017). Losses of prestressed forces of pre‐tensioned precast composite beams. The Structural Design of Tall and Special Buildings, 26(5), e1339. https://doi.org/10.1002/tal.1339

Kim, K. H., Lee, T. O., Lee, S. H., & Kim, S. K. (2012). Comparative analysis of column connection characteristics of green frame. Journal of the Korea Institute of Building Construction, 12(4), 415-425. https://doi.org/10.5345/JKIBC.2012.12.4.415

Kim, S. H., Choi, E. G., Kim, S. K., & Lee, S. H. (2010). A case study of the improvement of the structural work of a logistics facility by using PC member. Journal of the Korea Institute of Building Construction, 10(6), 127-135. https://doi.org/10.5345/JKIC.2010.12.6.127

Kim, S., Hong, W. K., Kim, J. H., & Kim, J. T. (2013a). The development of modularized construction of enhanced precast composite structural systems (Smart Green frame) and its embedded energy efficiency. Energy and Buildings, 66, 16-21. https://doi.org/10.1016/j.enbuild.2013.07.023

Kim, S., Hong, W. K., Ko, H. J., & Kim, J. T. (2013b). The energy efficient expansion remodeling construction method of bearing wall apartment buildings with pre-cast composite structural systems. Energy and Buildings, 66, 714-723. https://doi.org/10.1016/j.enbuild.2013.07.080

Lee, D., Lim, C., & Kim, S. (2016). CO2 emission reduction effects of an innovative composite precast concrete structure applied to heavy loaded and long span buildings. Energy and Buildings, 126, 36-43. https://doi.org/10.1016/j.enbuild.2016.05.022

Lee, S. H., Kim, S. E., Kim, G. H., Joo, J. K., & Kim, S. K. (2011). Analysis of structural work scheduling of green frame-focusing on apartment buildings. Journal of the Korea Institute of Building Construction, 11(3), 301-309. https://doi.org/10.5345/JKIC.2011.06.3.301

Lee, S. H., Kim, S. H., Lee, G. J., Kim, S. K., & Joo, J. K. (2012). Automatic algorithms of rebar quantity take-off of Green Frame by Composite precast concrete members. Korean Journal of Construction Engineering and Management, 13(1), 118128. https://doi.org/10.6106/KJCEM.2012.13.1.118

Lee, S. H., Park, J. Y., Lim, C. Y., & Kim, S. K. (2013). Constructability analysis of green columns at the low bending moment zone. Journal of Construction Engineering and Project Management, 3(4), 12-19. https://doi.org/10.6106/JCEPM.2013.3.4.012

Lee, S., Hong, W. K., Lim, C., & Kim, S. (2015). A dynamic erection simulation model of column-beam structures using composite precast concrete components. Journal of Intelligent & Robotic Systems, 79(3-4), 537-547. https://doi.org/10.1007/s10846-014-0115-9

Lim, C. Y., Joo, J. K., Lee, G. J., & Kim, S. K. (2011). In-situ production analysis of composite precast concrete members of green frame. Journal of the Korea Institute of Building Construction, 11(5), 501-514. https://doi.org/10.5345/JKIBC.2011.11.5.501

Lim, C., Lee, S., & Kim, S. (2015). Embodied energy and CO2 emission reduction of a column-beam structure with enhanced composite precast concrete members. Journal of Asian Architecture and Building Engineering, 14(3), 593-600. https://doi.org/10.3130/jaabe.14.593

Nawy, E. G. (2008). Concrete construction engineering handbook. CRC Press. https://doi.org/10.1201/9781420007657

Polat, G. (2008). Factors affecting the use of precast concrete systems in the United States. Journal of Construction Engineering and Management, 134(3), 169-178. https://doi.org/10.1061/(ASCE)0733-9364(2008)134:3(169)

Rajagopal. (2010). Bridging sales and service quality functions in retailing high-technology consumer products. International Journal of Services and Operations Management, 7(2), 177-199. https://doi.org/10.1504/IJSOM.2010.034436

Son, S., Lim, J. Y., & Kim, S. K. (2018). Erection simulation of steel connected precast concrete components for long span and heavy loaded logistics buildings. In 3rd World Congress on Civil, Structural, and Environmental Engineering (CSEE’18), Budapest, Hungary. https://doi.org/10.11159/icsenm18.118

Yardim, Y., Waleed, A. M. T., Jaafar, M. S., & Laseima, S. (2013). AAC-concrete light weight precast composite floor slab. Construction and Building Materials, 40, 405-410. https://doi.org/10.1016/j.conbuildmat.2012.10.011