In literature, there are many methods proposed for structural analysis based on discrete element formulations, mainly for nonlinear problems. One of these new methods is the Fibre Contact Element Method (FCEM). Many of these methods have been used for structural dynamic analysis problems. However, there are some questions about their precision in capturing the dynamic elastic response of structures when comparing to methods based on continuous models, like the well known Finite Element Method (FEM). For this reason, the results obtained with FCEM were extensively compared with FEM results and with laboratorial tests, to better understand the performance of this new method in capturing the elastic dynamic response of structures. Results indicate that this kind of discrete methods are able to determine the vibration modes of a structure with equal or better precision level than the obtained with FEM. FCEM was also used to capture the dynamic response of a reinforced concrete frame with infill walls, as a way to show the method capabilities in reproducing the dynamic behaviour of structures that have an almost continuous mass distribution.
Estêvão, J. M. C., & Carreira, A. S. (2015). Using the new Fibre Contact Element Method for dynamic structural analysis. Engineering Structures and Technologies, 7(1), 24-38. https://doi.org/10.3846/2029882X.2015.1087346
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in Engineering Structures and Technologies as Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.