Share:


The simplified analysis of the asymmetric single-pylon suspension bridge with rigid cables

Abstract

Suspension bridges are characterized by exceptional architectural expressions and excellent technical and economic properties. However, despite all advantages, suspension bridges have a few negative features. Suspension bridges with flexible cables share excessive deformation caused by the displacement of kinematic origin. In order to increase the stiffness of suspension bridges, an innovative structural solution refers to rigid cables used instead of the flexible ones. The paper describes a methodology for calculating an asymmetric single-pylon suspension bridge with rigid cables considering installation features. Also, the article presents the numerical simulation of the bridge and determines the accuracy of the proposed methodology.


First published online 15 June 2021

Keyword : suspension bridge, flexible cable, rigid cable, exact analysis, simplified analysis, construction method

How to Cite
Grigorjeva, T., & Paeglitis, A. (2020). The simplified analysis of the asymmetric single-pylon suspension bridge with rigid cables. Engineering Structures and Technologies, 12(2), 61-66. https://doi.org/10.3846/est.2020.13737
Published in Issue
Dec 31, 2020
Abstract Views
411
PDF Downloads
439
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Arco, C. D., & Aparicio, C. (2001). Preliminary static analysis of suspension bridges. Engineering Structures, 23(9), 1096–1103. https://doi.org/10.1016/S0141-0296(01)00009-8

Caballero, A., & Pose, M. (2010). Local bending stresses in stay cables with an elastic guide. Structural Engineering International, 20(3), 254–259. https://doi.org/10.2749/101686610792016745

Clemente, P., Nicolosi, G., & Raithel, A. (2000). Preliminary design of very long-span suspension bridges. Engineering Structures, 22(12), 1699–1706. https://doi.org/10.1016/S0141-0296(99)00112-1

Furst, A., Marti, P., & Ganz, H. (2001). Bending of stay cables. Structural Engineering International, 11(1), 42–46(5). https://doi.org/10.2749/101686601780324313

Gimsing, N. J., & Georgakis, Ch. T. (2012). Cable supported bridges: Concept and design (3rd ed.). John Wiley & Sons. https://doi.org/10.1002/9781119978237

Goremkins, V., Rocens, K., Serdjuks, D., & Sliseris, J. (2013). Simplified method of determination of natural-vibration frequencies of prestressed suspension bridge. In Procedia Engineering 57 of 11th International Conference on Modern Building Materials, Structures and Techniques, MBMST 2013 (pp. 343–352). https://doi.org/10.1016/j.proeng.2013.04.046

Goremkins, V., Rocens, K., & Serdjuks, D. (2012). Decreasing displacements of prestressed suspension bridge. Journal of Civil Engineering and Management, 18(6), 858–866. https://doi.org/10.3846/13923730.2012.720936

Grigorjeva, T., Juozapaitis, A., & Kamaitis, Z. (2010a). Static analysis and simplified design of suspension bridges having various rigidity of cables. Journal of Civil Engineering and Management: International Research and Achievements, 16(3), 363–371. https://doi.org/10.3846/jcem.2010.41

Grigorjeva, T., Juozapaitis, A., & Kamaitis, Z. (2010b). Influence of construction method on the behaviour of suspension bridges with main rigid cables. In Selected Papers of 10th International Conference Modern Building Materials, Structures and Techniques (pp. 628–634). Technika.

Grigorjeva, T., & Juozapaitis, A. (2013). Revised engineering method for analysis of behavior of suspension bridge with rigid cables and some aspects of numerical modelling. Procedia Engineering, 57, 364–371. https://doi.org/10.1016/j.proeng.2013.04.048

Idnurm, J. (2006). Descrete Analysis Method for Suspension Bridges. The Baltic Journal of Road and Bridge Engineering, 1(2), 115–119.

Jennings, A. (1987). Deflection theory analysis of different cable profiles for suspension bridges. Engineering Structures, 9, 84–94. https://doi.org/10.1016/0141-0296(87)90002-2

Juozapaitis, A., Merkevičius, T., Daniūnas, A., Kliukas, R., Sandovič, G., & Lukoševičienė, O. (2015). Analysis of innovative two-span suspension bridges. The Baltic Journal of Road and Bridge Engineering, 10(3), 269–275. https://doi.org/10.3846/bjrbe.2015.34

Juozapaitis, A., Kliukas, R., Sandovič, G., Lukoševičienė, O., & Merkevičius, T. (2013). Analysis of modern three-span suspension bridges with stiff in bending cables. The Baltic Journal of Road and Bridge Engineering, 8(3), 205–211. https://doi.org/10.3846/bjrbe.2013.26

Juozapaitis, A., Idnurm, S., Kaklauskas, G., Idnurm, J., & Gribniak, V. (2010). Non-linear analysis of suspension bridges with flexible and rigid cables. Journal of Civil Engineering and Management, 16(1), 149–154. https://doi.org/10.3846/jcem.2010.14

Juozapaitis, A., & Norkus, A. (2007). Shape determinating of a loaded cable via total displacements. Technological and Economic Development of Economy, 11(4), 283–291. https://doi.org/10.3846/13928619.2005.9637709

Juozapaitis, A., & Norkus, A. (2005). Determination of rational parameters for the advanced structure of a pedestrian suspension steel bridge. The Baltic Journal of Road and Bridge Engineering, 2(4), 173–181.

Kiisa, M., Idnurm, J., & Idnurm, S. (2012). Descrete analysis of elastic cables. The Baltic Journal of Road and Bridge Engineering, 7(2), 98–103. https://doi.org/10.3846/bjrbe.2012.14

Kim, S. E., & Thai, H.-T. (2010). Nonlinear inelastic dynamic analysis of suspension bridges. Engineering Structures, 32(12), 3845–3856. https://doi.org/10.1016/j.engstruct.2010.08.027

Kulbach, V. (2007). Cable structures. Design and analysis. Estonian Academy Publisher.

Ryall, M., Parke, G., & Harding, J. (2000). The manual of bridges engineering. Tomas Telford Ltd.

Prato, C. A., & Ceballos, M. A. (2003). Dynamic bending stresses near the ends of parallel bundle stay cables. Structural Engineering International, 13(1), 42–46. https://doi.org/10.2749/101686603777965008

Sandovič, G., Juozapaitis, A., & Kliukas, R. (2011). Simplified engineering method of suspension two-span pedestrian steel bridges with flexible and rigid cables under action of assymetrical loads. The Baltic Journal of Road and Bridge Engineering, 6(4), 267–273. https://doi.org/10.3846/bjrbe.2011.34

Sousa, R., Souza, R. M., Figueiredo, F. P., & Menezes, I. F. (2011). The influence of bending and shear stiffness and rotational inertia in vibration of cables: an analytical approach. Engineering Structures, 33(3), 689–695. https://doi.org/10.1016/j.engstruct.2010.11.026

Strasky, J. (2005). Stress-ribbon and supported cable pedestrian bridges. Tomas Telford Ltd.

Treyssede, F. (2010). Vibration analysis of horizontal self-weighted beams and cables with bending stiffness subject to thermal loads. Journal of Sound and Vibration, 329(9), 1536–1552. https://doi.org/10.1016/j.jsv.2009.11.018

Troyano, L. F. (2003). Bridge engineering: A global perspective. Tomas Telford Ltd. https://doi.org/10.1680/beagp.32156

Wollmann, G. P. (2001). Preliminary analysis of suspension bridges. Journal of Bridge Engineering, 6(4), 227–233. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:4(227)